New-generation amber united-atom force field.

J Phys Chem B

Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, USA.

Published: July 2006

We have developed a new-generation Amber united-atom force field for simulations involving highly demanding conformational sampling such as protein folding and protein-protein binding. In the new united-atom force field, all hydrogens on aliphatic carbons in all amino acids are united with carbons except those on Calpha. Our choice of explicit representation of all protein backbone atoms aims at minimizing perturbation to protein backbone conformational distributions and to simplify development of backbone torsion terms. Tests with dipeptides and solvated proteins show that our goal is achieved quite successfully. The new united-atom force field uses the same new RESP charging scheme based on B3LYP/cc-pVTZ//HF/6-31g** quantum mechanical calculations in the PCM continuum solvent as that in the Duan et al. force field. van der Waals parameters are empirically refitted starting from published values with respect to experimental solvation free energies of amino acid side-chain analogues. The suitability of mixing new point charges and van der Waals parameters with existing Amber covalent terms is tested on alanine dipeptide and is found to be reasonable. Parameters for all new torsion terms are refitted based on the new point charges and the van der Waals parameters. Molecular dynamics simulations of three small globular proteins in the explicit TIP3P solvent are performed to test the overall stability and accuracy of the new united-atom force field. Good agreements between the united-atom force field and the Duan et al. all-atom force field for both backbone and side-chain conformations are observed. In addition, the per-step efficiency of the new united-atom force field is demonstrated for simulations in the implicit generalized Born solvent. A speedup around two is observed over the Duan et al. all-atom force field for the three tested small proteins. Finally, the efficiency gain of the new united-atom force field in conformational sampling is further demonstrated with a well-known toy protein folding system, an 18 residue polyalanine in distance-dependent dielectric. The new united-atom force field is at least a factor of 200 more efficient than the Duan et al. all-atom force field for ab initio folding of the tested peptide.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp060163vDOI Listing

Publication Analysis

Top Keywords

force field
52
united-atom force
36
force
13
field
13
van der
12
der waals
12
waals parameters
12
duan all-atom
12
all-atom force
12
united-atom
9

Similar Publications

Failure modes and interaction mechanisms of tunnel under active landslide conditions.

Sci Rep

January 2025

China Academy of Railway Sciences Co. Ltd, Beijing, 100081, China.

The construction of tunnels can easily trigger the reactivation of old landslide bodies, posing a threat to the transportation safety. In this study, using methods such as engineering geological investigation, slope deformation monitoring, deep displacement monitoring, and numerical simulation, the interaction between landslides and tunnels was investigated from the perspective of landslide deformation and failure characteristics. The Walibie Tunnel (WLBT) of Shangri-La to Lijiang (XL) expressway was taken as an example.

View Article and Find Full Text PDF

The mechanical properties of metal-organic frameworks (MOFs) are of high fundamental and practical relevance. A particularly intriguing technique for determining anisotropic elastic tensors is Brillouin scattering, which so far has rarely been used for highly complex materials like MOFs. In the present contribution, we apply this technique to study a newly synthesized MOF-type material, referred to as GUT2.

View Article and Find Full Text PDF

Serosurvey of Bovine Viral Diarrhea Virus in Cattle in Southern Japan and Estimation of Its Transmissibility by Transient Infection in Nonvaccinated Cattle.

Viruses

January 2025

Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-Ku, Sapporo 060-0818, Hokkaido, Japan.

Bovine viral diarrhea (BVD) is caused by the BVD virus (BVDV) and has been reported worldwide in cattle. To estimate BVDV circulation among cattle where few BVD cases were reported in southern Japan, 1910 serum samples collected from 35 cattle farms without a BVD outbreak were investigated to detect antibodies against BVDV-1 and BVDV-2 using an indicator virus with a cytopathogenic effect and the luciferase gene, respectively. Neutralizing antibodies against BVDV-1 and BVDV-2 were detected more frequently in 18 vaccinated farms than in 17 nonvaccinated farms.

View Article and Find Full Text PDF

Rigid reinforced concrete (RC) frames are generally adopted as stiff elements to make the building structures resistant to seismic forces. However, a method has yet to be fully sought to provide earthquake resistance through optimizing beam and column performance in a rigid frame. Due to its high corrosion resistance, the integration of CFRP offers an opportunity to reduce frequent repairs and increase durability.

View Article and Find Full Text PDF

Novel Ultrafiltration Polyethersulfone Membranes Blended with Carrageenan.

Polymers (Basel)

January 2025

Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar.

The development of ultrafiltration (UF) polymeric membranes with high flux and enhanced antifouling properties bridges a critical gap in the polymeric membrane fabrication research field. In the present work, the preparation of novel PES membranes incorporated with carrageenan (CAR), which is a natural polymer derived from edible red seaweed, is reported for the first time. The PES/CAR membranes were prepared by using the nonsolvent-induced phase separation (NIPS) method at 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!