Bromine-loss and hydrogen-loss dissociations in low-lying electronic states of the CH3Br+ ion studied using multiconfiguration second-order perturbation theory.

J Phys Chem A

College of Chemistry and Chemical Engineering, Graduate University, Chinese Academy of Sciences, P.O. Box 4588, Beijing 100049, People's Republic of China.

Published: July 2006

AI Article Synopsis

  • CASSCF and CASPT2 calculations were performed on the CH3Br+ ion to study its electronic states, identifying the 1(2)A' state as the ground state and the 2(2)A' state as bound.
  • The excitation energies and relative energies were computed, showing good agreement with experimental data, while potential energy curves for Br-loss and H-loss dissociations were analyzed to understand the behavior of the ion states.
  • A detailed review of electronic states and dissociation processes for CH(3)X(+) ions (where X = F, Cl, Br) is provided, summarizing findings from this and previous research.

Article Abstract

Complete active space self-consistent field (CASSCF) and multiconfiguration second-order perturbation theory (CASPT2) calculations with an ANO-RCC basis were performed for the 1(2)A', 1(2)A", 2(2)A', and 2(2)A" states of the CH3Br+ ion. The 1(2)A' state is predicted to be the ground state. The 2(2)A' state is predicted to be a bound state. The adiabatic and vertical excitation energies and the relative energies at the molecular geometry were calculated, and the energetic results for 2(2)A' and 2(2)A" are in reasonable agreement with the experimental data. Potential energy curves (PECs) for Br-loss and H-loss dissociations from the four C(s) states were calculated at the CASPT2//CASSCF level and the electronic states of the CH3(+) and CH2Br(+) ions as the dissociation products were determined by checking the relative energies and geometries of the asymptote products along the PECs. In the Br-loss dissociation, the 1(2)A', 1(2)A", and 2(2)A' states correlate with CH3(+) (X1A1') and the 2(2)A" state correlates with CH3(+) (1(3)A"). The energy increases monotonically with the R(C-Br) value along the four Br-loss PECs. In the H-loss dissociation the 1(2)A', 1(2)A", 2(2)A', and 2(2)A" states correlate with the X(1)A(1), 1(3)A", 1(3)A', and 1(1)A" states (1(3)A' lying above 1(1)A") of CH2Br(+), respectively. Along the 2(2)A" H-loss PEC there is an energy barrier and the CASSCF wave functions at large R(C-H) values have shake-up ionization character. Along the 2(2)A' H-loss PEC there are an energy barrier and a minimum. At the end of the present paper we present a comprehensive review on the electronic states and the X-loss and H-loss dissociations of the CH(3)X(+) (X = F, Cl, and Br) ions on the basis of our previous studies and the present study.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp056138rDOI Listing

Publication Analysis

Top Keywords

electronic states
12
12a' 12a"
12
12a" 22a'
12
22a' 22a"
12
states
8
states ch3br+
8
ch3br+ ion
8
multiconfiguration second-order
8
second-order perturbation
8
perturbation theory
8

Similar Publications

Protocol for differentiating hematopoietic progenitor cells from human pluripotent stem cells in chemically defined monolayer culture.

STAR Protoc

January 2025

State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China. Electronic address:

Human pluripotent stem cells (hPSCs) provide a powerful platform for generating hematopoietic progenitor cells (HPCs) and investigating hematopoietic development. Here, we present a protocol for maintaining hPSCs and inducing their differentiation into HPCs through the endothelial-to-hematopoietic transition (EHT) on vitronectin-coated plates. We outline steps for evaluating the efficiency of HPC generation and assessing their potential to differentiate into various hematopoietic lineages.

View Article and Find Full Text PDF

Ergosterol alleviates hepatic steatosis and insulin resistance via promoting fatty acid β-oxidation by activating mitochondrial ACSL1.

Cell Rep

January 2025

State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China. Electronic address:

Sterols target sterol-sensing domain (SSD) proteins to lower cholesterol and circulating and hepatic triglyceride levels, but the mechanism remains unclear. In this study, we identify acyl-coenzyme A (CoA) synthetase long-chain family member 1 (ACSL1) as a direct target of ergosterol (ES). The C-terminal domain of ACSL1 undergoes conformational changes from closed to open, and ES may target the drug-binding pocket in the acetyl-CoA synthetase-like domain 1 (ASLD1) of ACSL1 to stabilize the closed conformation and maintain its activity.

View Article and Find Full Text PDF

miR-449a/miR-340 reprogram cell identity and metabolism in fusion-negative rhabdomyosarcoma.

Cell Rep

January 2025

Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Histology and Medical Embryology Unit, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy. Electronic address:

Rhabdomyosarcoma (RMS), the most common pediatric soft tissue sarcoma, arises in skeletal muscle and remains in an undifferentiated state due to transcriptional and post-transcriptional regulators. Among its subtypes, fusion-negative RMS (FN-RMS) accounts for the majority of diagnoses in the pediatric population. MicroRNAs (miRNAs) are non-coding RNAs that modulate cell identity via post-transcriptional regulation of messenger RNAs (mRNAs).

View Article and Find Full Text PDF

A Drosophila cardiac myosin increases jump muscle stretch activation and shortening deactivation.

Biophys J

January 2025

Department of Biological Sciences & Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute Troy, NY 12180, USA; Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute Troy, NY 12180, USA. Electronic address:

Stretch activation (SA), a delayed increase in force production following rapid muscle lengthening, is critical to the function of vertebrate cardiac muscle and insect asynchronous indirect flight muscle (IFM). SA enables or increases power generation in muscle types used in a cyclical manner. Recently, myosin isoform expression has been implicated as a mechanism for varying the amplitude of SA in some muscle types.

View Article and Find Full Text PDF

The basal level of salicylic acid represses the PRT6 N-degron pathway to modulate root growth and stress response in rice.

Plant Commun

January 2025

State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.

Maintaining a stable basal level of salicylic acid (SA) is crucial for plant growth, development, and stress response, though basal levels of SA vary significantly among plant species. However, the molecular mechanisms by which basal SA regulates plant growth and stress response remain to be elucidated. In this study, we performed a genetic screen to identify suppressors of the root growth defect in Osaim1, a rice mutant deficient in basal SA biosynthesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!