A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Direct field observation of the relative humidity effect on the beta-gauge readings. | LitMetric

Direct field observation of the relative humidity effect on the beta-gauge readings.

J Air Waste Manag Assoc

Institute of Environmental Engineering, National Chiao Tung University, Hsinchu, Taiwan, Republic of China.

Published: June 2006

The effect of ambient relative humidity (RH) on hourly particulate matter (PM10) readings of beta-gauge monitors has been studied using two collocated monitors in the field. The inlet air of monitor 1 was conditioned with water vapor to increase its RH, whereas monitor 2 operated normally in ambient conditions. Experimental data showed that PM10 readings of monitor 1 were nearly the same as monitor 2, as long as the RH of its conditioned incoming air did not exceed approximately 80-85%. However, when the RH exceeded approximately 80-85%, PM10 readings of monitor 1 became higher than monitor 2, and the difference increased with increasing RH. The measurement of pressure drop across the filter was also conducted, and the data revealed that the increase of pressure drop per unit of PM10 concentration decreased when RH was higher than approximately 80-85%, as compared with the case when RH was lower than 80-85%. This is perhaps because of more porous structure of deposited particles in the beta-gauge monitor when RH is greater than approximately 80-85%. The theoretical calculation using an evaporation model and a thermodynamic model has been conducted to simulate the beta-gauge readings. The results show that the theoretical PM10 concentrations using the evaporation model are in better agreement with the actual beta-gauge readings than those using the thermodynamic equilibrium model.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10473289.2006.10464498DOI Listing

Publication Analysis

Top Keywords

beta-gauge readings
12
pm10 readings
12
relative humidity
8
readings monitor
8
pressure drop
8
evaporation model
8
monitor
7
readings
6
beta-gauge
5
pm10
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!