Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The effect of ambient relative humidity (RH) on hourly particulate matter (PM10) readings of beta-gauge monitors has been studied using two collocated monitors in the field. The inlet air of monitor 1 was conditioned with water vapor to increase its RH, whereas monitor 2 operated normally in ambient conditions. Experimental data showed that PM10 readings of monitor 1 were nearly the same as monitor 2, as long as the RH of its conditioned incoming air did not exceed approximately 80-85%. However, when the RH exceeded approximately 80-85%, PM10 readings of monitor 1 became higher than monitor 2, and the difference increased with increasing RH. The measurement of pressure drop across the filter was also conducted, and the data revealed that the increase of pressure drop per unit of PM10 concentration decreased when RH was higher than approximately 80-85%, as compared with the case when RH was lower than 80-85%. This is perhaps because of more porous structure of deposited particles in the beta-gauge monitor when RH is greater than approximately 80-85%. The theoretical calculation using an evaporation model and a thermodynamic model has been conducted to simulate the beta-gauge readings. The results show that the theoretical PM10 concentrations using the evaporation model are in better agreement with the actual beta-gauge readings than those using the thermodynamic equilibrium model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10473289.2006.10464498 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!