An approach to the perceptual optimization of complex visualizations.

IEEE Trans Vis Comput Graph

Visualization Laboratory, Langford Texas A&M University, College Station 77843-3137, USA.

Published: July 2006

This paper proposes a new experimental framework within which evidence regarding the perceptual characteristics of a visualization method can be collected, and describes how this evidence can be explored to discover principles and insights to guide the design of perceptually near-optimal visualizations. We make the case that each of the current approaches for evaluating visualizations is limited in what it can tell us about optimal tuning and visual design. We go on to argue that our new approach is better suited to optimizing the kinds of complex visual displays that are commonly created in visualization. Our method uses human-in-the-loop experiments to selectively search through the parameter space of a visualization method, generating large databases of rated visualization solutions. Data mining is then used to extract results from the database, ranging from highly specific exemplar visualizations for a particular data set, to more broadly applicable guidelines for visualization design. We illustrate our approach using a recent study of optimal texturing for layered surfaces viewed in stereo and in motion. We show that a genetic algorithm is a valuable way of guiding the human-in-the-loop search through visualization parameter space. We also demonstrate several useful data mining methods including clustering, principal component analysis, neural networks, and statistical comparisons of functions of parameters.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TVCG.2006.58DOI Listing

Publication Analysis

Top Keywords

visualization method
12
parameter space
8
data mining
8
visualization
6
approach perceptual
4
perceptual optimization
4
optimization complex
4
visualizations
4
complex visualizations
4
visualizations paper
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!