Aim: To investigate the effect of interaction between enteric epithelial cells and lymphocytes of Peyer's patch on the release of nitric oxide (NO) and IL-6 in response to Shigella lipopolysaccharide (LPS).
Methods: Human colonic epithelial cells (Caco-2) were mixed cocultured with lymphocytes of Peyer's patch from wild-type (C57 mice) and inducible NO synthase knockout mice, and challenged with Shigella F2a-12 LPS. Release of NO and mIL-6 was measured by Griess colorimetric assay and enzyme-linked immunosorbent assay (ELISA), respectively.
Results: In the absence of LPS challenge, NO was detected in the culture medium of Caco-2 epithelial cells but not in lymphocytes of Peyer's patch, and the NO release was further up-regulated in both cocultures with lymphocytes from either the wild-type or iNOS knockout mice, with a significantly higher level observed in the coculture with iNOS knockout lymphocytes. After Shigella F2a-12 LPS challenge for 24-h, NO production was significantly increased in both Caco-2 alone and the coculture with lymphocytes of Peyer's patch from the wild-type mice but not from iNOS knockout mice. LPS was found to stimulate the release of mIL-6 from lymphocytes, which was suppressed by coculture with Caco-2 epithelial cells. The LPS-induced mIL-6 production in lymphocytes from iNOS knockout mice was significantly greater than that from the wild-type mice.
Conclusion: Lymphocytes of Peyer's patch maintain a constitutive basal level of NO production from the enteric epithelial cell Caco-2. LPS-induced mIL-6 release from lymphocytes of Peyer's patch is suppressed by the cocultured epithelial cells. While no changes are detectable in NO production in lymphocytes from both wild-type and iNOS knockout mice before and after LPS challenge, NO from lymphocytes appears to play an inhibitory role in epithelial NO release and their own mIL-6 release in response to LPS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4087941 | PMC |
http://dx.doi.org/10.3748/wjg.v12.i24.3895 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!