Tryptophan-BODIPY: a versatile donor-acceptor pair for probing generic changes of intraprotein distances.

Phys Chem Chem Phys

Biophysical Chemistry and Biochemistry, Department of Chemistry, Umeå University, S-901 87 Umeå, Sweden.

Published: July 2006

We demonstrate that Tryptophan (Trp) and N-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-yl)methyl iodoacetamide (BODIPY) is a suitable donor-acceptor (D-A) pair for intraprotein distance measurements, applicable to the study of protein folding. The suitability of the Trp-BODIPY electronic energy transfer is exemplified on the extensively-characterised two-state protein, S6, from Thermus thermophilus. This protein has proved to be useful for the elucidation of folding cooperativity and nucleation, as well as the changes upon induction of structural transitions. For a comprehensive structural coverage, BODIPY molecules were anchored by Cys insertions at four different positions on the S6 surface. Trp residues at position 33 or 62 acted as donors of electronic energy to the BODIPY groups. None of the D-A pairs show any detectable difference in the folding kinetics (or protein stability), which supports the notion that the two-state transition of S6 is a highly concerted process. Similar results are obtained for mutants affecting the N- and C-terminus. The kinetic analyses indicate that changes of the transition state occur through local unfolding of the native state, rather than by a decrease of the folding cooperativity. The distances obtained from the analysis of the time-resolved fluorescence experiments in the native state were compared to those calculated from X-ray structure. As an additional measure, molecular dynamics simulations of the different protein constructs were performed to account for variability in the BODIPY location on the protein surface. The agreement between fluorescence and X-ray data is quite convincing, and shows that energy transfer measurements between Trp and BODIPY can probe distances between ca. 17 to 34 A, with an error better than 10%.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b601313aDOI Listing

Publication Analysis

Top Keywords

electronic energy
8
energy transfer
8
folding cooperativity
8
native state
8
protein
6
bodipy
5
tryptophan-bodipy versatile
4
versatile donor-acceptor
4
donor-acceptor pair
4
pair probing
4

Similar Publications

Electronic band evolution between Lieb and kagome nanoribbons.

Nanotechnology

January 2025

Departamento de Física, Universidade Federal do Ceará, Campus do Pici, Bloco 922, 60455-900, Fortaleza, 60455-900, BRAZIL.

We investigate the electronic properties of nanoribbons made out of monolayer Lieb, transition, and kagome lattices using the tight-binding model with a generic Hamiltonian. It allows us to map the evolutionary stages of the interconvertibility process between Lieb and kagome nanoribbons by means of only one control parameter. Results for the energy spectra, the density of states, and spatial probability density distributions are discussed for nanoribbons with three types of edges: straight, bearded, and asymmetric.

View Article and Find Full Text PDF

We measure the high-intensity laser propagation throughout meter-scale, channel-guided laser-plasma accelerators by adjusting the length of the plasma channel on a shot-by-shot basis, showing high-quality guiding of 500 TW laser pulses over 30 cm in a hydrogen plasma of density n_{0}≈1×10^{17}  cm^{-3}. We observed transverse energy transport of higher-order modes in the first ≈12  cm of the plasma channel, followed by quasimatched propagation, and the gradual, dark-current-free depletion of laser energy to the wake. We quantify the laser-to-wake transfer efficiency limitations of currently available petawatt-class lasers and demonstrate via simulation how control over the laser mode can significantly improve beam parameters.

View Article and Find Full Text PDF

Massive Dirac fermions, which are essential for realizing novel topological phenomena, are expected to be generated from massless Dirac fermions by breaking the related symmetry, such as time-reversal symmetry in topological insulators or crystal symmetry in topological crystalline insulators. Here, we report scanning tunneling microscopy and angle-resolved photoemission spectroscopy studies of α-Bi_{4}I_{4}, which reveals the realization of massive Dirac fermions in the (100) surface states without breaking the time-reversal symmetry. Combined with first-principles calculations, our experimental results indicate that the spontaneous symmetry breaking engenders two nondegenerate edge states at the opposite sides of monolayer Bi_{4}I_{4} after the structural phase transition, imparting mass to the Dirac fermions after taking the interlayer coupling into account.

View Article and Find Full Text PDF

High-energy nuclear collisions create a quark-gluon plasma, whose initial condition and subsequent expansion vary from event to event, impacting the distribution of the eventwise average transverse momentum [P([p_{T}])]. Disentangling the contributions from fluctuations in the nuclear overlap size (geometrical component) and other sources at a fixed size (intrinsic component) remains a challenge. This problem is addressed by measuring the mean, variance, and skewness of P([p_{T}]) in ^{208}Pb+^{208}Pb and ^{129}Xe+^{129}Xe collisions at sqrt[s_{NN}]=5.

View Article and Find Full Text PDF

Measurement of CP Violation Observables in D^{+}→K^{-}K^{+}π^{+} Decays.

Phys Rev Lett

December 2024

Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

A search for violation of the charge-parity (CP) symmetry in the D^{+}→K^{-}K^{+}π^{+} decay is presented, with proton-proton collision data corresponding to an integrated luminosity of 5.4  fb^{-1}, collected at a center-of-mass energy of 13 TeV with the LHCb detector. A novel model-independent technique is used to compare the D^{+} and D^{-} phase-space distributions, with instrumental asymmetries subtracted using the D_{s}^{+}→K^{-}K^{+}π^{+} decay as a control channel.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!