Sphingomonas xenophaga BN6 degrades various (substituted) naphthalenesulfonates to the corresponding (substituted) salicylates. A gene cluster was identified on the plasmid pBN6 which coded for several enzymes participating in the degradative pathway for naphthalenesulfonates. A DNA fragment of 16 915 bp was sequenced which contained 17 ORFs. The genes encoding the 1,2-dihydroxynaphthalene dioxygenase, 2-hydroxychromene-2-carboxylate isomerase, and 2'-hydroxybenzalpyruvate aldolase of the naphthalenesulfonate pathway were identified on the DNA fragment and the encoded proteins heterologously expressed in Escherichia coli. Also, the genes encoding the ferredoxin and ferredoxin reductase of a multi-component, ring-hydroxylating naphthalenesulfonate dioxygenase were identified by insertional inactivation. The identified genes generally demonstrated the highest degree of homology to enzymes encoded by the phenanthrene-degrading organism Sphingomonas sp. P2, or the megaplasmid pNL1 of the naphthalene- and biphenyl-degrading strain Sphingomonas aromaticivorans F199. The genes of S. xenophaga BN6 participating in the degradation of naphthalenesulfonates also shared the same organization in three different transcriptional units as the genes involved in the degradation of naphthalene, biphenyl, and phenanthrene previously found in Sphingomonas sp. P2 and S. aromaticivorans F199. The genes were flanked in S. xenophaga BN6 by ORFs which specify proteins that show the highest homologies to proteins of mobile genetic elements.

Download full-text PDF

Source
http://dx.doi.org/10.1099/mic.0.28783-0DOI Listing

Publication Analysis

Top Keywords

xenophaga bn6
16
sphingomonas xenophaga
8
dna fragment
8
genes encoding
8
sphingomonas aromaticivorans
8
aromaticivorans f199
8
f199 genes
8
genes
7
sphingomonas
5
identification functional
4

Similar Publications

Sphingomonas xenophaga BN6 degrades various (substituted) naphthalenesulfonates to the corresponding (substituted) salicylates. A gene cluster was identified on the plasmid pBN6 which coded for several enzymes participating in the degradative pathway for naphthalenesulfonates. A DNA fragment of 16 915 bp was sequenced which contained 17 ORFs.

View Article and Find Full Text PDF

The plasmids from 16 sphingomonads which degrade various xenobiotics and polycyclic aromatic compounds were compared with the previously sequenced plasmid pNL1 from Sphingomonas aromaticivorans F199. The replicase genes repAaAb from plasmid pNL1 were amplified by PCR and used as a gene probe for the identification of plasmids belonging to the same incompatibility group as plasmid pNL1. Plasmids were prepared from various sphingomonads and hybridized with the repA gene probe.

View Article and Find Full Text PDF

A systematic survey for the presence of plasmids in 17 different xenobiotic-degrading Sphingomonas strains was performed. In almost all analyzed strains, two to five plasmids with sizes of about 50 to 500 kb were detected by using pulsed-field gel electrophoresis. A comparison of plasmid preparations untreated or treated with S1 nuclease suggested that, in general, Sphingomonas plasmids are circular.

View Article and Find Full Text PDF

The unique aromatic catabolic genes in sphingomonads degrading polycyclic aromatic hydrocarbons (PAHs).

J Gen Appl Microbiol

February 2003

Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.

Many members of the sphingomonad genus isolated from different geological areas can degrade a wide variety of polycyclic aromatic hydrocarbons (PAHs) and related compounds. These sphingomonads such as Sphingobium yanoikuyae strain B1, Novosphingobium aromaticivorans strain F199, and Sphingobium sp. strain P2 have been found to possess a unique group of genes for aromatic degradation, which are distantly related with those in pseudomonads and other genera reported so far both in sequence homology and gene organization.

View Article and Find Full Text PDF

During aerobic degradation of naphthalene-2-sulfonate (2NS), Sphingomonas xenophaga strain BN6 produces redox mediators which significantly increase the ability of the strain to reduce azo dyes under anaerobic conditions. It was previously suggested that 1,2-dihydroxynaphthalene (1,2-DHN), which is an intermediate in the degradative pathway of 2NS, is the precursor of these redox mediators. In order to analyze the importance of the formation of 1,2-DHN, the dihydroxynaphthalene dioxygenase gene (nsaC) was disrupted by gene replacement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!