Background: Previously it has been reported that preoperative feeding preserves heart function in rats after intestinal ischemia-reperfusion. To further improve postoperative organ function, bioactive nutrition compounds were selected in vitro against the xanthine oxidase radical cascade, an enzyme suggested to play a key role in the induction of single- or multiple-organ dysfunction.

Methods: Flavonoids were selected in vitro for their capacity to (1) inhibit xanthine oxidase, (2) scavenge superoxide, and (3) scavenge peroxylradicals. The most bioactive flavonoids were added to the preoperative nutrition to study their effect on postintestinal ischemia-reperfusion organ function.

Results: A combination of flavonoids selected on basis of effective flavonoid xanthine oxidase inhibition and superoxide scavenging resulted in increased superoxide scavenging. In vivo, the selected flavonoid mixture significantly lowered postischemic intestinal apoptosis and intestinal oxidative stress indicated by malondialdehyde concentration when compared with ischemia-reperfusion fasted and sham-fasted animals. Moreover, this flavonoid mixture significantly lowered plasma creatinine and urea concentration, both indicating a better postoperative kidney function. Furthermore, oxidative stress measured as this flavonoid mixture when compared with control significantly lowered plasma malondialdehyde concentration in fed rats.

Conclusions: Coadministration of bioactive flavonoid mixture to preoperative nutrition, in contrast to fasting, attenuates ischemia-reperfusion injury by preserving kidney function in the rat and decreasing apoptosis in the intestine.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0148607106030004302DOI Listing

Publication Analysis

Top Keywords

flavonoid mixture
16
xanthine oxidase
12
selected vitro
8
flavonoids selected
8
preoperative nutrition
8
superoxide scavenging
8
mixture lowered
8
oxidative stress
8
malondialdehyde concentration
8
lowered plasma
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!