We present resonant inelastic x-ray scattering and x-ray emission spectroscopy results on Gd metal to 113 GPa which suggest Kondo-like aspects in the delocalization of 4f electrons. Analysis of the resonant inelastic x-ray scattering data reveals a prolonged and continuous delocalization with volume throughout the entire pressure range, so that the volume-collapse transition at 59 GPa is only part of the phenomenon. Moreover, the Lgamma1 x-ray emission spectroscopy spectra indicate no apparent change in the bare 4f moment across the collapse, suggesting that Kondo screening is responsible for the expected Pauli-like behavior in magnetic susceptibility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.96.215701 | DOI Listing |
J Biomed Opt
January 2025
McGill University, Montreal Neurological Institute-Hospital, Montreal, Quebec, Canada.
Significance: Maximal safe resection of brain tumors can be performed by neurosurgeons through the use of accurate and practical guidance tools that provide real-time information during surgery. Current established adjuvant intraoperative technologies include neuronavigation guidance, intraoperative imaging (MRI and ultrasound), and 5-ALA for fluorescence-guided surgery.
Aim: We have developed intraoperative Raman spectroscopy as a real-time decision support system for neurosurgical guidance in brain tumors.
ACS Cent Sci
January 2025
Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
Inelastic photoelectron scattering (IPES) by gas molecules, a critical phenomenon observed in ambient pressure X-ray photoelectron spectroscopy (APXPS), complicates spectral interpretation due to kinetic energy loss in the primary spectrum and the appearance of additional features at higher binding energies. In this study, we systematically investigate IPES in various gas environments using APXPS, providing detailed insights into interactions between photoelectrons emitted from solid surfaces and surrounding gas molecules. Core-level XPS spectra of Au, Ag, Zn, and Cu metals were recorded over a wide kinetic energy range in the presence of CO, N, Ar, and H gases, demonstrating the universal nature of IPES across different systems.
View Article and Find Full Text PDFSci Bull (Beijing)
January 2025
Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK; College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China. Electronic address:
The methanol-to-olefins (MTO) process has the potential to bridge future gaps in the supply of sustainable lower olefins. Promoting the selectivity of propylene and ethylene and revealing the catalytic role of active sites are challenging goals in MTO reactions. Here, we report a novel heteroatomic silicoaluminophosphate (SAPO) zeolite, SAPO-34-Ta, which incorporates active tantalum(V) sites within the framework to afford an optimal distribution of acidity.
View Article and Find Full Text PDFChemphyschem
January 2025
Institute Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz Center Berlin for Materials and Energy, Albert-Einstein-Strasse 15, 12489, Berlin, Germany.
Two-dimensional layered double hydroxides (LDHs) are ideal candidates for a large number of (bio)catalytic applications due to their flexible composition and easy to tailor properties. Functionality can be achieved by intercalation of amino acids (as the basic units of peptides and proteins). To gain insight on the functionality, we apply resonant inelastic soft x-ray scattering and near edge x-ray absorption fine structure spectroscopy to CaFe LDH in its pristine form as well as intercalated with the amino acids proline and cysteine to probe the electronic structure and its changes upon intercalation.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Laboratório de Espectroscopia Molecular, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05513-970 São Paulo, SP, Brazil.
Molecular dynamics (MD) simulation is used to study the intermolecular dynamics in the THz frequency range of the ionic liquid 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide, [C2C1im][FSI]. Non-polarizable and polarizable models for classical MD simulation are compared using as quality criteria ab initio molecular dynamics (AIMD) and experimental data from far-infrared (FIR) spectroscopy and previously published data of inelastic x-ray scattering (IXS). According to data from IXS spectroscopy, incorporating polarization in the classical MD simulation has relatively little effect on the dispersion curve (excitation frequency vs wavevector) for longitudinal acoustic modes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!