Cyclin-dependent kinase 5 (Cdk5)-p35 is downregulated in cultured neurons by N-methyl-D-aspartate (NMDA) via the proteasomal degradation of p35. However, it is not known where in neurons this downregulation occurs or the physiologic meaning of the reaction. We show the enrichment of Cdk5 and p35 in the postsynaptic density and the NMDA-induced degradation of postsynaptic p35 using brain slices and cultured neurons. To evaluate the role of this downregulation, we examined the relationship between Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) activation and Cdk5 downregulation, as events downstream from NMDA stimulation. Glutamate or NMDA stimulation induced CaMKII autophosphorylation over a time course that mirrored the time course of p35 degradation. To simulate the downregulation of postsynaptic Cdk5 in invitro experiments, we used the Cdk5 inhibitor roscovitine. The inhibition of Cdk5 activity by roscovitine enhanced CaMKII autophosphorylation and activation in cultured neurons, and in an isolated postsynaptic-density-enriched fraction. These results suggest that Cdk5 activity suppresses CaMKII activation, and that the downregulation of Cdk5 activity after treatment withNMDA facilitates CaMKII activation, leading to the easier induction of long-term potentiation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jnr.20975DOI Listing

Publication Analysis

Top Keywords

cultured neurons
12
camkii activation
12
cdk5 activity
12
ca2+/calmodulin-dependent protein
8
protein kinase
8
cyclin-dependent kinase
8
nmda stimulation
8
camkii autophosphorylation
8
time course
8
cdk5
7

Similar Publications

Stroke is the leading cause of death and disability worldwide, with ischemic stroke accounting for the majority of these. HBA is the active ingredient in and has potential therapeutic effects on central nervous system diseases. In this study, the cell model of cerebral ischemia was replicated by the culture method of oxygen-glucose deprivation/reoxygenation, and the rat model of vascular dementia was established by the two-vessel occlusion method.

View Article and Find Full Text PDF

Lipopolysaccharides (LPS) are bacterial mediators of neuroinflammation that have been detected in close association with pathological protein aggregations of Alzheimer's disease. LPS induce the release of cytokines by microglia and mediate the upregulation of inducible nitric oxide synthase (iNOS)-a mechanism also associated with amyloidosis. Curcumin is a recognized natural medicine but has extremely low bioavailability.

View Article and Find Full Text PDF

Olfactory ensheathing cell (OEC) transplantation demonstrates promising therapeutic results in neurological disorders, such as spinal cord injury. The emerging cell-free secretome therapy compensates for the limitations of cell transplantation, such as low cell survival rates. However, the therapeutic benefits of the human OEC secretome remain unclear.

View Article and Find Full Text PDF

Systematic Evaluation of Extracellular Coating Matrix on the Differentiation of Human-Induced Pluripotent Stem Cells to Cortical Neurons.

Int J Mol Sci

December 2024

Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.

Induced pluripotent stem cell (iPSC)-derived neurons (iNs) have been widely used as models of neurodevelopment and neurodegenerative diseases. Coating cell culture vessels with extracellular matrixes (ECMs) gives structural support and facilitates cell communication and differentiation, ultimately enhances neuronal functions. However, the relevance of different ECMs to the natural environment and their impact on neuronal differentiation have not been fully characterized.

View Article and Find Full Text PDF

Characterization of Mesenchymal and Neural Stem Cells Response to Bipolar Microsecond Electric Pulses Stimulation.

Int J Mol Sci

December 2024

Division of Biotechnologies, Italian National Agency for Energy, New Technologies and Sustainable Economic Development (ENEA), 00123 Rome, Italy.

In the tissue regeneration field, stem cell transplantation represents a promising therapeutic strategy. To favor their implantation, proliferation and differentiation need to be controlled. Several studies have demonstrated that stem cell fate can be controlled by applying continuous electric field stimulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!