The Methoprene-tolerant (Met) bHLH-PAS gene in Drosophila melanogaster is involved in the molecular action of juvenile hormone (JH), and mutants result in resistance to the toxic and morphogenetic effects of JH and JH agonist insecticides such as methoprene. A detailed study of Met mutants can shed light on the poorly understood action of JH as well as the molecular basis of Met resistance to JH insecticides. Nine mutant alleles bearing point mutations in Met were examined for penetrance and expressivity of three phenotypic characters: resistance, defective oogenesis, and a novel eye defect. The collection ranged from two weak alleles having less severe phenotypes to strong alleles with severe phenotypes similar to that of a null allele. The point mutations were located in both conserved and nonconserved domains. Both the eye defect, seen as severely malformed ommatidial facets in the posterior margin of the compound eye, and the oogenesis phenotype are nonconditional, whereas expression of the resistance phenotype requires treatment with JH or JH analogs (JHAs) during early metamorphosis. A proposed basis for all the phenotypic characters centers on MET action as a transcriptional regulator of ecdysone secondary-response target genes during metamorphosis. Disruption of MET function either by mutation or by JHA presence during early metamorphosis results in transcriptional misregulation of different target genes, resulting in the pathology seen in either instance. The variety of amino acid changes in MET that resulted in resistance may portend a rapid rise in resistance in response to increased use of JH insecticides in field insect populations.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00438-006-0138-4DOI Listing

Publication Analysis

Top Keywords

drosophila melanogaster
8
met resistance
8
point mutations
8
phenotypic characters
8
eye defect
8
alleles severe
8
severe phenotypes
8
early metamorphosis
8
target genes
8
resistance
7

Similar Publications

The Drosophila visual system is a powerful model to study the development of neural circuits. Lobula columnar neurons-LCNs are visual output neurons that encode visual features relevant to natural behavior. There are ~20 classes of LCNs forming non-overlapping synaptic optic glomeruli in the brain.

View Article and Find Full Text PDF

Potential of emodepside for vector-borne disease control.

Malar J

January 2025

Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.

Background: Emodepside is an anthelmintic used in veterinary medicine that is currently under investigation in human clinical trials for the treatment of soil-transmitted helminths and possibly Onchocerca volvulus. Emodepside targets the calcium-activated voltage-gated potassium slowpoke 1 (SLO-1) channels of presynaptic nerves of pharynx and body wall muscle cells of nematodes leading to paralysis, reduced locomotion and egg laying, starvation, and death. Emodepside also has activity against Drosophila melanogaster SLO-1 channels.

View Article and Find Full Text PDF

Environmental temperature dictates the developmental pace of poikilothermic animals. In , slower development at lower temperatures results in higher brain connectivity, but the generality of such scaling across temperatures and brain regions and its impact on function are unclear. Here, we show that brain connectivity scales continuously across temperatures, in agreement with a first-principle model that postulates different metabolic constraints for the growth of the brain and the organism.

View Article and Find Full Text PDF

Noncoding satellite DNA repeats are abundant at the pericentromeric heterochromatin of eukaryotic chromosomes. During interphase, sequence-specific DNA-binding proteins cluster these repeats from multiple chromosomes into nuclear foci known as chromocenters. Despite the pivotal role of chromocenters in cellular processes like genome encapsulation and gene repression, the associated proteins remain incompletely characterized.

View Article and Find Full Text PDF

Epoxide hydrolases JHEH1 and JHEH2 deficiency impairs glucose metabolism in Drosophila.

Biochem Biophys Res Commun

January 2025

Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan. Electronic address:

Epoxide hydrolases (EHs) play pivotal roles in detoxification, catabolism, and signaling by converting epoxides into diols and have been implicated in several diseases, such as cancers and diabetes. EH homologs in insects are designated as Juvenile hormone epoxide hydrolases (JHEHs) due to their catalytic activity toward Juvenile hormone (JH). However, the biological function of JHEHs has been controversial in the fruit fly Drosophila melanogaster.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!