To reveal whether active attention modulates neuronal responses related to passive attention to somatosensory stimuli presented suddenly against a silent background, we examined the passive attention-related change in amplitude of the event-related brain potentials (ERPs), caused by temporal infrequency of stimuli. Eighteen healthy subjects performed passive and active attention tasks in two stimulus conditions. In the oddball condition, frequent (80%, standard) and infrequent (20%, deviant) electrical stimuli were randomly delivered to the second and third digits of the left hand. In the deviant-alone condition, the deviant stimulus (deviant-alone stimulus) was delivered with the same timing and sequence as in the oddball condition without standard stimuli. The P100, N140, and P200 elicited by the deviant-alone stimulus were enhanced in amplitude compared to those evoked by the oddball deviant stimulus in both the active and passive tasks. Moreover, active attention increased the enhancement of P100 and N140. The difference waveform (deviant-alone minus oddball deviant) provided similar findings. In conclusion, active attention enhances neural responses related to passive shifts of attention to somatosensory signals suddenly presented against a silent background. The results indicate that top-down signals for detecting target stimuli interact with passive shifts of attention caused by bottom-up signals.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00221-006-0578-4DOI Listing

Publication Analysis

Top Keywords

active attention
20
silent background
12
attention modulates
8
passive attention-related
8
neural responses
8
responses passive
8
attention somatosensory
8
oddball condition
8
deviant stimulus
8
deviant-alone stimulus
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!