[Transfection efficiency of adenoviral vector AD5/F35 to malignant hematopoietic cells of different origins].

Zhongguo Shi Yan Xue Ye Xue Za Zhi

Department of Hematology, Xianya Hospital, Changsha 410008, China.

Published: June 2006

This study was aimed to investigate the transfection efficiency of adenoviral vector AD5/F35 to hematopoietic malignant cells lines of various origins and AD5/F35 cytotoxicity. The hematologic malignant cell lines of various origins were transfected by AD5/F35-EGFP at different multiple of infection (MOI) and AD5-EGFP was used as control; the proportion of fluorescence positive cells was detected by flow cytometry; the killing effect of virus on infective target cells was assayed by MTT and observed by fluorescence microscopy. The results showed that the transfection efficiency of AD5/F35 vector to cell line of myeloid origin was > 99% at MOI = 30, the transfective efficiency of AD5 vector was 26.4% at MOI = 1,000; the transfection efficiency of AD5/F35 vector and AD5 vector to cell line of B cell origin were 11.7% and 5.7%, respectively, at MOI = 1,000. AD5/F35 and AD5 vectors could not effectively transfect cells of T cell origin, no fluorescence positive cells were detected at MOI = 1,000; no significant killing effect of AD5/F35 vector on infective target cells was observed at MOI = 1,000. It is concluded that AD5/F35 vector infection has definite selectivity to hematologic malignant cells of various origin, the infection ability of AD5/F35 vector to cells of myeloid origin is stronger than that to cells of B cell origin, the cytotoxicity of AD5/F35 vector to infective target cells is small. The AD5/F35 vector is preferable to AD5 vector in respect of infection ability and offers good prospects of application in gene therapy for myeloid leukemia cells as target cells.

Download full-text PDF

Source

Publication Analysis

Top Keywords

ad5/f35 vector
28
target cells
16
moi 1000
16
cells
13
vector
12
transfection efficiency
12
infective target
12
ad5 vector
12
cell origin
12
ad5/f35
11

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!