Structures and reaction mechanisms of cumene formation via benzene alkylation with propylene in a newly synthesized ITQ-24 zeolite: an embedded ONIOM study.

J Phys Chem B

Laboratory for Computational and Applied Chemistry, Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.

Published: June 2006

The cumene formation via benzene alkylation with propylene on the new three-dimensional nanoporous catalyst, ITQ-24 zeolite, has been investigated by using the ONIOM2(B3LYP/6-31G(d,p):UFF) method. Both consecutive and associative reaction pathways are examined. The contributions of the short-range van der Waals interactions, which are explicitly included in the ONIOM2 model, and an additional long-range electrostatic potential from the extended zeolite framework to the energy profile are taken into consideration. It is found that benzene alkylation with propylene in the ITQ-24 zeolite prefers to occur through the consecutive reaction mechanism. The benzene alkylation step is the reaction rate-determining step with an estimated activation energy of 35.70 kcal/mol, comparable with an experimental report in beta-zeolite of 34.9 kcal/mol. The electrostatic potential from the extended zeolite framework shows a much more significant contribution to the transition state selectivity than the van der Waals interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp061644hDOI Listing

Publication Analysis

Top Keywords

benzene alkylation
16
alkylation propylene
12
itq-24 zeolite
12
cumene formation
8
formation benzene
8
van der
8
der waals
8
waals interactions
8
electrostatic potential
8
potential extended
8

Similar Publications

Sulfate and sulfonate compounds are extensively used as anionic surfactants in personal care products (PCPs), which might pose adverse potential to human health. However, available research mostly identified certain subsets of sulfated and sulfonated surfactants based on target analysis. In this study, we developed a comprehensive nontarget strategy for identification of sulfated and sulfonated surfactants in PCPs using UHPLCHRMS supplemented by an in-lab R script based on characteristic fragment ions and sulfur isotope patterns.

View Article and Find Full Text PDF

Hydrogen spillover, particularly when involving "interparticle" hydrogen spillover, offers a unique opportunity to enhance catalytic efficiency by remote activation of surface acidity. Building on this concept, this study aims to investigate physically mixed alumina-supported platinum nanoparticles (Pt/AlO) and zirconia-supported tungsten oxide (WO/ZrO) in promoting the direct synthesis of cumene from benzene and propane at 300 °C. The reaction with Pt/AlO alone afforded propylene as the only product, indicating the successive reaction route of Pt-catalyzed dehydrogenation of propane, followed by acid-catalyzed alkylation.

View Article and Find Full Text PDF

Robust dioxin-linked metallophthalocyanine tbo topology covalent organic frameworks and their photocatalytic properties.

Natl Sci Rev

January 2025

Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.

Constructing 3D functional covalent organic frameworks (COFs) with both robust linkage and planar macrocycle building blocks still remains a challenge due to the difficulty in adjusting both the crystallinity and the dominant 2D structures. In addition, it is also challenging to selectively convert inert C(sp)-H bonds into value-added chemicals. Herein, robust 3D COFs, USTB-28-M (M=Co, Ni, Cu), have been polymerized from the nucleophilic aromatic substitution reaction of -symmetric 2,3,6,7,14,15-hexahydroxyltriptycene with -symmetric hexadecafluorophthalocyanine (MPcF) under solvothermal conditions.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on developing a green and effective pesticide formulation using nanoemulsions, including adjuvants like Calcium Alkyl Benzene Sulphonate (Atlox 4838B) and trisiloxane ethoxylate (ARGAL), aimed at targeting the pest Sitophilus oryzae.
  • Results indicate that all formulations achieved nanoscale droplets, with scanning electron microscopy revealing their spherical shapes, while dynamic light scattering showed variations in size based on the presence of adjuvants.
  • The nanoemulsions demonstrated good stability under various conditions, with most formulations having acidic to neutral pH levels, and adjuvants enhanced their stability by altering droplet characteristics and increasing kinetic stability.
View Article and Find Full Text PDF

Benzene reduction by molecular complexes remains an important synthetic challenge, requiring harsh reaction conditions involving group I metals. Reductions of benzene, to date, typically result in a loss of aromaticity, although the benzene tetra-anion, a 10π-electron system, has been calculated to be stable and aromatic. Due to the lack of sufficiently potent reductants, four-electron reduction of benzene usually requires the use of group I metals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!