Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A CoSiBEA zeolite is prepared by a two-step postsynthesis method that consists of first creating vacant T-sites with associated silanol groups by dealumination of TEABEA zeolite with nitric acid and then impregnating the resulting SiBEA zeolite with an aqueous solution of Co(NO3)2. The incorporation of Co into lattice sites of SiBEA is evidenced by XRD. The consumption of OH groups is monitored by FTIR. The presence of Co in its II oxidation state and in tetrahedral coordination is evidenced by diffuse reflectance UV-vis and EPR spectroscopy. The very high reduction temperature (1120 K) of cobalt in CoSiBEA zeolite determined by TPR confirms that Co interacts strongly with the zeolite support, consistent with lattice tetrahedral (T(d)) coordination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp0623387 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!