A novel method of synthesis consisting of the production of ordered arrangements of tubular pores distributed inside SnO2 annealed thin films, which are prepared from a rotating disk process carried out at 2000-3500 rpm, is herein described. The main novelty is that no surfactant molecules are required in order to create these ordered pore structures; the templating entities are supramolecular assemblies of oligomeric chains formed during the extra-long aging allowed to the sol-gel processing of tin(IV) tetra-tert-amiloxide, Sn(OAm(t))4, chelated with acetylacetone molecules. Low angle X-ray diffraction peaks of SnO2 thin films calcined at 500 degrees C clearly certify the existence of ordered mesostructures when employing the right H2O/Sn(OAm(t))4 molar ratio during the SnO2 sol-gel synthesis. The final SnO2 ordered mesostructures are reminiscent of those linked to MCM-41 and SBA-15 substrates. Pore-size distribution analyses proceeding from N2 sorption isotherms at 76 K on the SnO2 thin films calcined at 500 degrees C unequivocally confirm the presence of tubular mesopores (mode pore sizes ranging from 5 to 7 nm). The thicknesses of the SnO2 films range from 80 to 150 nm after performing a drying process at 100 degrees C and from 70 to 125 nm after calcining in air at 500 degrees C; these film thicknesses show, in general, decreasing trends when either the spinning rate or the H2O/(Sn(OAm(t))4 ratio is increased.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp057141d | DOI Listing |
Sensors (Basel)
December 2024
MESA+ Institute for Nanotechnology, University of Twente, 7522 NH Enschede, The Netherlands.
This paper introduces a Coriolis mass flow and density sensor. The sensor is made using Surface Channel Technology (SCT) but with selective wet etching to create the channels. This method forms suspended microfluidic channels with a larger cross-sectional area.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1, 119991 Moscow, Russia.
The scope of this work was to develop a thin-film composite (TFC) membrane for the separation of CO/CO mixtures, which are relevant for many processes of gas processing and gasification of carbon-based feedstock. Special attention was given to the development of highly permeable porous polysulfone (PSF) supports (more than 26,000 GPU for CO) since both the selective and support layers contribute significantly to the overall performance of the TFC membrane. The PSF porous support is widely used in commercial and lab-scale TFC membranes, and its porous structure and other exploitation parameters are set during the non-solvent-induced phase separation (NIPS) process.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
School of Integrated Circuit, Southeast University, Nanjing 210096, China.
Aluminum nitride (AlN) with a wide band gap (approximately 6.2 eV) has attractive characteristics, including high thermal conductivity, a high dielectric constant, and good insulating properties, which are suitable for the field of resistive random access memory. AlN thin films were deposited on ITO substrate using the radio-frequency magnetron sputtering technique.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
School of Physics, Changchun University of Science and Technology, Changchun 130012, China.
Tungsten oxide (WO) electrochromic devices are obtaining increasing interest due to their color change and thermal regulation. However, most previous work focuses on the absorption or transmission spectra of materials, rather than the optical parameters evolution in full spectrum in the electrochromic processes. Herein, we developed a systematic protocol of ex situ methods to clarify the evolutions of subtle structure changes, Raman vibration modes, and optical parameters of WO thin films in electrochromic processes as stimulated by dosage-dependent Li insertion.
View Article and Find Full Text PDFMicromachines (Basel)
November 2024
Southwest Institute of Technology and Engineering, Chongqing 400039, China.
High-k metal oxides are gradually replacing the traditional SiO dielectric layer in the new generation of electronic devices. In this paper, we report the production of five-element high entropy metal oxides (HEMOs) dielectric films by solution method and analyzed the role of each metal oxide in the system by characterizing the film properties. On this basis, we found optimal combination of (AlGaTiYZr)O with the best dielectric properties, exhibiting a low leakage current of 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!