Inhibition of the mitochondrial electron transfer chain and induction of reactive oxygen species (ROS) production are one of the roots of cadmium (Cd) toxicity. To appreciate the impact of Cd on mitochondria, we focused on the expression of CoxI gene which encodes the subunit I of the Cytochrome c oxidase (complex IV of the respiratory chain). CoxI gene expression was studied by real-time quantitative PCR in three species: two freshwater bivalves (Corbicula fluminea and Dreissena polymorpha) and one marine bivalve (diploid or triploid Crassostrea gigas). Bivalves were exposed for 10 or 14 days to 0.13 microM Cd(2+) and 15.3 microM Zn(2+) in controlled laboratory conditions. We demonstrate that in the three mollusk species CoxI gene was up-regulated by Cd. Zinc (Zn), which is known to have antioxidant properties, had no effect on CoxI gene expression. In the presence of Cd and Zn, CoxI gene inducibility was lower than after a single Cd exposure, in each species; result that could not be fully explained by a decreased Cd accumulation. CoxI gene induction by Cd was 4.8-fold higher in triploid oysters than in diploid ones, indicating a possible influence of triploidy on animal responses to Cd contamination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10534-005-5671-9 | DOI Listing |
Redox Rep
December 2025
Department of Cardiology, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China.
Objective: Myocardial ischemia-reperfusion injury (MIRI) is a highly complex disease with high morbidity and mortality. Studying the molecular mechanism of MIRI and discovering new targets are crucial for the future treatment of MIRI.
Methods: We constructed the MIRI rat model and hypoxia/reoxygenation (H/R) injury cardiomyocytes model.
Vet Parasitol Reg Stud Reports
January 2025
Department of Parasitology, Faculty of Medicine, Cairo University, Giza, Egypt.
Dermanyssus gallinae (D. gallinae) is a nocturnal, blood-feeding ectoparasite that primarily infests poultry, causing significant economic losses. This study aimed to identify poultry red mites and detect associated pathogens using morphological and molecular techniques.
View Article and Find Full Text PDFMol Biol Rep
December 2024
Teaching Veterinary Clinical Complex, College of Veterinary and Animal Sciences (CVAS), Kerala Veterinary and Animal Sciences University (KVASU), Mannuthy, Thrissur, Kerala, 680651, India.
Background: Ticks are prominent vectors of numerous pathogens that adversely affect human and animal health. Monitoring tick population dynamics is key in developing ideal tick-borne disease surveillance systems and critical vector control programmes. This study aimed to conduct the morphological and molecular characterization of ticks infesting domesticated goats in Kerala, India.
View Article and Find Full Text PDFPeerJ
December 2024
Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.
The prevalence of spp. infecting sheep and goats were investigated in two cities and surroundings in northwest Saudi Arabia. Blood samples from 403 sheep and goats from Madina ( = 201) and Tabuk ( = 202) cities (177 from sheep and 226 from goats) were investigated.
View Article and Find Full Text PDFSci Rep
December 2024
Indian Statistical Institute, Giridih, Jharkhand, 815301, India.
In the rice agroecosystems of Southeast Asia, rice root knot nematode (Meloidogyne graminicola) significantly impairs yield, representing a major species within the 'graminis-group' known for its morphological similarities with other root knot nematodes (RKNs). This study delves into the variations in reproductive potential, morphology, morphometrics, and genetic diversity among thirty RKN populations in rice across three distinct agroecological zones in Jharkhand, India. Despite notable differences in reproductive potential among the populations, morphological and morphometric correlations to reproductive potential were inconclusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!