We present a method based on Tikhonov regularization for solving one-dimensional inverse tomography problems that arise in combustion applications. In this technique, Tikhonov regularization transforms the ill-conditioned set of equations generated by onion-peeling deconvolution into a well-conditioned set that is less susceptible to measurement errors that arise in experimental settings. The performance of this method is compared to that of onion-peeling and Abel three-point deconvolution by solving for a known field variable distribution from projected data contaminated with an artificially generated error. The results show that Tikhonov deconvolution provides a more accurate field distribution than onion-peeling and Abel three-point deconvolution and is more stable than the other two methods as the distance between projected data points decreases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ao.45.004638 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!