SRC-family tyrosine kinases in wound- and ligand-induced epidermal growth factor receptor activation in human corneal epithelial cells.

Invest Ophthalmol Vis Sci

Department of Ophthalmology, the Kresge Eye Institute, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.

Published: July 2006

AI Article Synopsis

  • The study focuses on understanding how wounding of human corneal epithelial cells (HCECs) activates the epidermal growth factor receptor (EGFR) and its signaling pathways, which are essential for wound healing.
  • Researchers used a model of SV40-immortalized HCECs to test the effects of a selective inhibitor (PP2) and a specific growth factor (HB-EGF) on wound healing and cell signaling.
  • Results indicated that PP2 effectively blocked EGFR activation and downstream signaling in response to wounding, which in turn reduced cell migration and wound closure, highlighting the critical role of Src family kinases in this process.

Article Abstract

Purpose: The authors have previously demonstrated that wounding of human corneal epithelial cells (HCECs) transactivates epidermal growth factor (EGF) receptor (EGFR) and its downstream signaling pathways and that this EGFR signaling is required for epithelial wound healing. In this study, the authors sought to identify the underlying mechanisms for EGFR transactivation in response to wounding in HCECs.

Methods: SV40-immortalized HCEC (THCE) monolayer was wounded and allowed to heal in the presence or absence of a selective inhibitor of the Src family kinases PP2 and EGFR ligand heparin-binding EGF-like growth factor (HB-EGF). Wound closure was monitored by photographing of the injury immediately or 24 hours after wounding. Activation of EGFR in THCE cells and in primary HCECs was analyzed by immunoprecipitation of EGFR, followed by Western blotting with phosphotyrosine antibody. Phosphorylation of extracellular signal-regulated kinase (ERK), AKT (a major substrate of phosphatidylinositol 3'-kinase [PI3K]), Src at tyrosine Y416, and EGFR at Y845 was analyzed by Western blotting with antibodies specific to phosphorylated proteins. Effects of PP2 on THCE cell migration were determined by Boyden chamber migration assay.

Results: Among several inhibitors tested, PP2 blocked wound-induced EGFR phosphorylation in THCE cells. PP2 at 12.5 microM effectively inhibited EGFR transactivation in response to wounding and to the phosphorylation of ERK and AKT in THCE cells and primary HCECs. Consistent with the inhibition of EGFR transactivation, PP2 also attenuated epithelial migration and wound closure with or without exogenously added HB-EGF. PP2 at a concentration as high as 50 microM exhibited no effects on HB-EGF induced ERK phosphorylation. On the other hand, AKT phosphorylation was much more sensitive to PP2 than ERK or EGFR phosphorylation because 3.13 microM PP2 effectively inhibited wound- or HB-EGF-induced AKT phosphorylation.

Conclusions: These results suggest that Src kinase mediates wound-induced EGFR transactivation and participates in a pathway to activate the PI3K-AKT pathway downstream of EGFR in HCECs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2666387PMC
http://dx.doi.org/10.1167/iovs.05-1361DOI Listing

Publication Analysis

Top Keywords

egfr transactivation
16
egfr
13
growth factor
12
thce cells
12
epidermal growth
8
human corneal
8
corneal epithelial
8
epithelial cells
8
transactivation response
8
response wounding
8

Similar Publications

The X-Linked Tumor Suppressor TSPX Regulates Genes Involved in the EGFR Signaling Pathway and Cell Viability to Suppress Lung Adenocarcinoma.

Genes (Basel)

January 2025

Division of Cell and Developmental Genetics, Department of Medicine, Veterans Affairs Medical Center, and the Institute for Human Genetics, University of California, San Francisco, CA 94121, USA.

TSPX is an X-linked tumor suppressor that was initially identified in non-small cell lung cancer (NSCLC) cell lines. However, its expression patterns and downstream mechanisms in NSCLC remain unclear. This study aims to investigate the functions of TSPX in NSCLC by identifying its potential downstream targets and their correlation with clinical outcomes.

View Article and Find Full Text PDF

Epidemiological studies suggest an increased risk of colorectal cancer (CRC) aggravation in patients with chronic kidney disease (CKD). Our previous study demonstrated that indoxyl sulfate, a uremic toxin whose concentration increases with CKD progression, exacerbates CRC through activation of the AhR and Akt pathways. Consequently, indoxyl sulfate has been proposed to be a significant link between CKD progression and CRC aggravation.

View Article and Find Full Text PDF

Nuclear translocation of RON receptor tyrosine kinase. New mechanistic and functional insights.

Cytokine Growth Factor Rev

January 2025

Center for Precision Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan; Department of Pathology, College of Medicine, China Medical University, Taichung, Taiwan. Electronic address:

Receptor tyrosine kinases (RTKs) are membrane sensors that monitor alterations in the extracellular milieu and translate this information into appropriate cellular responses. Epidermal growth factor receptor (EGFR) is the most well-known model in which gene expression is upregulated by mitogenic signals through the activation of multiple signaling cascades or by nuclear translocation of the full-length EGFR protein. RON (Receptuer d'Origine Nantatise, also known as macrophage stimulating 1 receptor, MST1R) has recently gained attention as a therapeutic target for human cancer.

View Article and Find Full Text PDF

The underlying mechanisms between cancer stem cells (CSC) and epithelial-mesenchymal transition (EMT) in pancreatic cancer (PC) remain unclear. In this study, we identified TGIF2 as a target gene of CSC using sncRNA and machine learning. TGIF2 is closely related to the expression of SOX2, EGFR, and E-cadherin, indicating poor prognosis.

View Article and Find Full Text PDF

Neurobiology of COVID-19-Associated Psychosis/Schizophrenia: Implication of Epidermal Growth Factor Receptor Signaling.

Neuropsychopharmacol Rep

March 2025

Molecular Psychoneuroimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.

COVID-19 exhibits not only respiratory symptoms but also neurological/psychiatric symptoms rarely including delirium/psychosis. Pathological studies on COVID-19 provide evidence that the cytokine storm, in particular (epidermal growth factor) EGF receptor (EGFR, ErbB1, Her1) activation, plays a central role in the progression of viral replication and lung fibrosis. Of note, SARS-CoV-2 virus (specifically, S1 spike domain) mimics EGF and directly transactivates EGFR, preceding the inflammatory process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!