In SHR aorta, calcium ionophore A-23187 releases prostacyclin and thromboxane A2 as endothelium-derived contracting factors.

Am J Physiol Heart Circ Physiol

Département Angiologie, Institut de Recherches Servier, 11 rue des Moulineaux, 92150 Suresnes, France.

Published: November 2006

In mature spontaneously hypertensive rats (SHR) and Wistar-Kyoto rats (WKY), acetylcholine and the calcium ionophore A-23187 release endothelium-derived contracting factors (EDCFs), cyclooxygenase derivatives that activate thromboxane-endoperoxide (TP) receptors on vascular smooth muscle. The EDCFs released by acetylcholine are most likely prostacyclin and prostaglandin (PG)H(2), whereas those released by A-23187 remain to be identified. Isometric tension and the release of PGs were measured in rings of isolated aortas of WKY and SHR. A-23187 evoked the endothelium-dependent release of prostacyclin, thromboxane A(2), PGF(2alpha), PGE(2), and possibly PGH(2) (PGI(2) >> thromboxane A(2) = PGF(2alpha) = PGE(2)). In SHR aortas, the release of prostacyclin and thromboxane A(2) was significantly larger in response to A-23187 than to acetylcholine. In response to the calcium ionophore, the release of thromboxane A(2) was significantly larger in aortas of SHR than in those of WKY. In both strains of rat, the inhibition of cyclooxygenase-1 prevented the release of PGs and the occurrence of endothelium-dependent contractions. Dazoxiben, the thromboxane synthase inhibitor, abolished the A-23187-dependent production of thromboxane A(2) and inhibited by approximately one-half the endothelium-dependent contractions. U-51605, an inhibitor of PGI synthase, reduced the release of prostacyclin elicited by A-23187 but induced a parallel increase in the production of PGE(2) and PGF(2alpha), suggestive of a PGH(2) spillover, which was associated with the enhancement of the endothelium-dependent contractions. These results indicate that in the aorta of SHR and WKY, the endothelium-dependent contractions elicited by A-23187 involve the release of thromboxane A(2) and prostacyclin with a most likely concomitant contribution of PGH(2).

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.01115.2005DOI Listing

Publication Analysis

Top Keywords

endothelium-dependent contractions
16
calcium ionophore
12
prostacyclin thromboxane
12
release prostacyclin
12
ionophore a-23187
8
thromboxane
8
endothelium-derived contracting
8
contracting factors
8
release
8
release pgs
8

Similar Publications

This study tested the hypothesis that coronary artery adaptations during the postpartum period are related to underlying reductions in endothelium-dependent relaxation and/or augmented smooth muscle vasoconstrictor responsiveness. In vivo experiments were performed in control (nonpregnant) and postpartum swine 35-45 days post-delivery, with isometric tension experiments performed in isolated coronary arteries from those animals. Coronary artery rings demonstrated increases in active tension generation following incremental increases in passive stretch with no differences between groups.

View Article and Find Full Text PDF

6-Nitrodopamine (6-ND) is the predominant catecholamine released from isolated vascular tissues in both mammals and reptiles, with its release being significantly reduced by the NO synthesis inhibitor, N-nitro-L-arginine methyl ester (L-NAME). The vasorelaxation induced by 6-ND is unaffected by either L-NAME or the soluble guanylate cyclase (sGC) inhibitor, ODQ, indicating an alternative mechanism of action. The vasorelaxant effect appears to be mediated through selective antagonism of dopamine D receptors rather than traditional nitric oxide (NO)-mediated pathways.

View Article and Find Full Text PDF

Platelet-activating factor (PAF), a phospholipid mediator, was discovered in 1972 as an inducer of platelet aggregation. Subsequent studies have revealed that PAF has a variety of biological functions, such as its role as a potent proinflammatory mediator. Additionally, PAF regulates the contractile functions of various types of smooth muscle (SM), such as the (1) endothelium-dependent relaxation of vascular SM; (2) contraction and epithelium-dependent relaxation of airway SM; (3) contraction of gastrointestinal SM; and (4) contraction of uterine SM, which occurs more strongly in pregnant females.

View Article and Find Full Text PDF

Preeclampsia (PE) is a hypertensive disorder of pregnancy and is associated with increases in soluble fms-like tyrosine kinase-1 (sFlt-1) and reductions in nitric oxide (NO) levels. Placental ischemia and hypoxia are hypothesized as initial pathophysiological events of PE. Nitrite (NO metabolite) may be recycled back to NO in ischemic and hypoxic tissues.

View Article and Find Full Text PDF

Background: Endothelial cell TRPV4 (transient receptor potential vanilloid 4) channels provide a control point that is pivotal in regulating blood vessel diameter by mediating the Ca-dependent release of endothelial-derived vasoactive factors. In hypertension, TRPV4-mediated control of vascular function is disrupted, but the underlying mechanisms and precise physiological consequences remain controversial.

Methods: Here, using a comprehensive array of methodologies, endothelial TRPV4 channel function was examined in intact mesenteric resistance arteries from normotensive Wistar-Kyoto and spontaneously hypertensive rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!