Cell stressors such as physical forces can activate Sp1-dependent genes but the regulatory mechanisms are not defined. We determined if the stress-induced MAP kinase, p38, can phosphorylate Sp1 and thereby regulate the Sp1 target gene FLNA. We used Rat-2 cells and human gingival fibroblasts to examine stress-induced activation of an Sp1-dependent gene and SL2 cells, an Sp1-deficient model system, to facilitate interaction studies of transfected Sp1 with regulatory factors. Mechanical stress applied to Rat-2 cells increased promoter activity of the Sp1 target gene filamin A by >5-fold; activation was blocked by mutations to Sp1 binding sites in the filamin A promoter. Transfection experiments in SL2 cells with Sp1 expression vectors showed that when co-transfected with constitutively active p38, wild-type Sp1 but not an Sp1 binding mutant, increased promoter activity of the Sp1 target gene, filamin A, and enhanced binding of nuclear extracts to a filamin A promoter oligonucleotide. Filamin A promoter activity was blocked by dominant negative p38. Sp1 that was phosphorylated at Thr453 and Thr739 by constitutively active p38 bound to the filamin A promoter more effectively than un-phosphorylated Sp1. Recombinant active p38 phosphorylated wild-type Sp1 in vitro while the Sp1 Thr453Thr739 double mutant protein showed >3-fold reduction of phosphorylation. We conclude that stress activation of p38 phosphorylates Sp1 at specific threonine residues, modifications which in turn enhance the expression of Sp1-dependent genes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gene.2006.04.012 | DOI Listing |
Naunyn Schmiedebergs Arch Pharmacol
September 2024
Department of Operating Theatre, Jingmen No.2 People's Hospital, Jingmen City, 448000, Hubei, China.
Curcumin is a kind of polyphenol substance extracted from the rhizome of Curcuma longa. Because of its good biological activity and pharmacological effects, it has been used in anti-tumor research. The aim of this study was to investigate the anti-cancer mechanism of curcumin on laryngeal squamous cell carcinoma (LSCC).
View Article and Find Full Text PDFThyroid
December 2023
Department of Endocrinology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
Aberrant expression of oncogenes and/or tumor suppressor genes (TSGs) drives the tumorigenesis and development of thyroid cancer. We investigated the expression and function of a member of the activating transcription factor (ATF)/cAMP-responsive element-binding protein (CREB) transcription factor (TF) family, ATF3, in thyroid cancer. Data from 80 patients with papillary thyroid cancer (PTC) in the First Affiliated Hospital of Sun Yat-sen University and 510 PTC samples in The Cancer Genome Atlas thyroid cancer database were utilized for gene expression and prognosis analyses.
View Article and Find Full Text PDFCancer Genet
November 2023
Department of Breast Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, China. Electronic address:
We investigated the effect of stem cell marker dopamine receptor D2 (DRD2) on the proliferation of hormone-receptor-negative breast cancer cells. High-throughput DNA methylation sequencing on an 850 K chip was used to pre-screen breast cancer tissues with significant methylation differences. The expression of DRD2 in breast cancer and normal breast tissues, and clinical risk factors, were detected by pyrophosphoric acid validation and immunohistochemistry.
View Article and Find Full Text PDFInt J Dev Biol
August 2023
School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.
The nucleocytoplasmic translocation of yes-associated protein 1 (YAP1) controls the growth of animal tissues and organs. YAP1 binds to transcription factors in the nucleus to activate the transcription of proliferation and anti-apoptotic genes. The Hippo pathway prevents the nuclear translocation of YAP1 by phosphorylating YAP1, while mechanical forces promote it by opening the nuclear pore complex and stimulating other signaling pathways.
View Article and Find Full Text PDFCancer Res Commun
October 2022
Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey.
Unlabelled: Lung adenocarcinoma (LUAD) is the major subtype in lung cancer, and cigarette smoking is essentially linked to its pathogenesis. We show that downregulation of Filamin A interacting protein 1-like (FILIP1L) is a driver of LUAD progression. Cigarette smoking causes its downregulation by promoter methylation in LUAD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!