Simple procedures for the construction of a robust and cost-effective cell-free protein synthesis system.

J Biotechnol

School of Chemical and Biological Engineering, College of Engineering, Seoul National University, Seoul 151-742, Republic of Korea.

Published: December 2006

AI Article Synopsis

Article Abstract

In this study, as a part of our efforts to improve the robustness and economical feasibility of cell-free protein synthesis, we developed a simple method of preparing the cell extracts used for catalyzing cell-free protein synthesis reactions. We found that the high-speed centrifugation, pre-incubation, and dialysis steps of the conventional procedures could be omitted without losing the translational activity of the resulting cell extract. Instead, a simple centrifugation step at low speed (12,000 RCF for 10 min) followed by a brief period of incubation was sufficient for the preparation of an active extract to support cell-free protein synthesis with higher productivity and consistency. Compared to the present standard procedures for the preparation of the S30 extract, the overall cost of the reagents and processing time were reduced by 80 and 60%, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiotec.2006.05.014DOI Listing

Publication Analysis

Top Keywords

cell-free protein
16
protein synthesis
16
simple procedures
4
procedures construction
4
construction robust
4
robust cost-effective
4
cell-free
4
cost-effective cell-free
4
protein
4
synthesis
4

Similar Publications

Mesenchymal stem cell-derived extracellular vesicles in periodontal bone repair.

J Mol Med (Berl)

January 2025

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases &, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.

Periodontitis is a chronic inflammatory disease that destroys tooth-supporting structures and poses significant public health challenges due to its high prevalence and links to systemic health conditions. Traditional treatments are effective in reducing the inflammatory response and improving the clinical symptoms of periodontitis. However, these methods are challenging to achieve an ideal treatment effect in alveolar bone repair.

View Article and Find Full Text PDF

The inhibition of human microsomal prostaglandin E (PGE) synthase-1 (mPGES-1) is a promising therapeutic modality for developing next-generation anti-inflammatory medications. In this study, we present novel 2-phenylbenzothiazole derivatives featuring heteroaryl sulfonamide end-capping substructures as inhibitors of human mPGES-1, with IC values in the range of 0.72-3.

View Article and Find Full Text PDF

Inverse dose protraction effects of low-LET radiation: evidence and significance.

Mutat Res Rev Mutat Res

January 2025

Radiation Epidemiology Branch, National Cancer Institute, MD 20892-9778, USA; Faculty of Health, Science and Technology, Oxford Brookes University, Headington Campus, OX3 0BP, UK.

Biological effects of ionizing radiation vary not merely with total dose but also with temporal dose distribution. Sparing dose protraction effects, in which dose protraction reduces effects of radiation have widely been accepted and generally assumed in radiation protection, particularly for stochastic effects (e.g.

View Article and Find Full Text PDF

Cell-free enzyme systems have emerged as a promising approach for producing various biometabolites, offering several advantages over traditional whole-cell systems. This study presents an approach to producing nicotinamide mononucleotide (NMN) by combining a Saccharomyces cerevisiae cell-free enzyme with a recombinant Escherichia coli cell-free enzyme. The system leverages the ATP generated by yeast during ethanol fermentation to produce NMN in the presence of nicotinamide (NAM) as a substrate.

View Article and Find Full Text PDF

Development and validation of an ultrasensitive qPCR method to identify and quantify EGFR T790M in cell-free DNA.

Bioanalysis

January 2025

Bioanalytical Services Department, WuXi AppTec (Shanghai) Co. Ltd, Shanghai, China.

Background: Circulating tumor DNA (ctDNA) is a promising biomarker for cancer prognosis and drug development. A major challenge in the ctDNA determination method is discriminating ctDNA from highly similar but significantly more abundant wild-type DNA sensitively and accurately.

Method: An ultrasensitive qPCR method termed Triple Enrichment Amplification of Mutation PCR (TEAM-PCR) was developed to detect EGFR T790M mutation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!