Engineering of the redox imbalance of Fusarium oxysporum enables anaerobic growth on xylose.

Metab Eng

Center for Microbial Biotechnology, Technical University of Denmark, BioCentrum-DTU, Building 223, DK-2800 Kgs. Lyngby, Denmark.

Published: September 2006

Dissimilatory nitrate reduction metabolism, of the natural xylose-fermenting fungus Fusarium oxysporum, was used as a strategy to achieve anaerobic growth and ethanol production from xylose. Beneficial alterations of the redox fluxes and thereby of the xylose metabolism were obtained by taking advantage of the regeneration of the cofactor NAD(+) during the denitrification process. In batch cultivations, nitrate sustained growth under anaerobic conditions (1.21 g L(-1) biomass) and simultaneously a maximum yield of 0.55 moles of ethanol per mole of xylose was achieved, whereas substitution of nitrate with ammonium limited the growth significantly (0.15 g L(-1) biomass). Using nitrate, the maximum acetate yield was 0.21 moles per mole of xylose and no xylitol excretion was observed. Furthermore, the network structure in the central carbon metabolism of F. oxysporum was characterized in steady state. F. oxysporum grew anaerobically on [1-(13)C] labelled glucose and unlabelled xylose in chemostat cultivation with nitrate as nitrogen source. The use of labelled substrate allowed the precise determination of the glucose and xylose contribution to the carbon fluxes in the central metabolism of this poorly described microorganism. It was demonstrated that dissimilatory nitrate reduction allows F. oxysporum to exhibit typical respiratory metabolic behaviour with a highly active TCA cycle and a large demand for NADPH.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymben.2006.04.004DOI Listing

Publication Analysis

Top Keywords

fusarium oxysporum
8
anaerobic growth
8
dissimilatory nitrate
8
nitrate reduction
8
l-1 biomass
8
mole xylose
8
xylose
7
nitrate
6
oxysporum
5
engineering redox
4

Similar Publications

The Combination of α-FeO NP and Trichoderma sp. Improves Antifungal Activity Against Fusarium Wilt.

J Basic Microbiol

January 2025

Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, Brescia, Italy.

Soil-borne plant pathogens are the most damaging pathogens responsible for severe crop damage. A conventional chemotherapy approach to these pathogens has numerous environmental issues, while biological control agents (BCAs) are less promising under field conditions. There is an immediate need to develop an integrated strategy for utilizing nanoparticles and biocontrol to manage soil-borne pathogens, such as Fusarium wilt, effectively.

View Article and Find Full Text PDF

The soilborne pathogen Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) is currently devastating banana production worldwide.

View Article and Find Full Text PDF

Jasmonic acid (JA), ethylene (ET) and salicylic acid (SA) are the three major phytohormones coordinating plant defense responses, and all three are implicated in the defense against the fungal pathogen Fusarium oxysporum. However, their distinct modes of action and possible interactions remain unknown, in part because all spatial information on their activity is lacking. Here, we set out to probe this spatial aspect of plant immunity by using live-microscopy with newly developed fluorescence-based transcriptional reporter lines.

View Article and Find Full Text PDF

Tropical fruit-derived Lactiplantibacillus as potential probiotic and antifungal agents against Fusarium oxysporum.

Sci Rep

January 2025

Molecular Mycotoxicology Lab, Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru, 570 006, India.

Fifty-five lactic acid bacteria (LAB) were isolated from seven selected tropical fruits, with Solanum nigrum exhibiting the highest LAB prevalence and Couroupita guianenis and Musa fruits showing the lowest counts. Two strains isolated from Ficus racemosa demonstrated significant antifungal activity against Fusarium oxysporum. 16S rDNA sequencing identified these strains as Lactiplantibacillus plantarum MYSVCF3 and Lpb.

View Article and Find Full Text PDF

In this study, we have designed and developed a cationic bolaform C12-(2,3-dihydroxy-N, N-dimethyl-N-(2-ureidoethyl)propan-1-aminium chloride)2 (C12(DDUPAC)2) that is derived from biocompatible molecules. The bolaform C12(DDUPAC)2 has hydroxyl (OH) functionality at both the cationic head groups. The impact of head group structure on the self-assembly and effectiveness of gene transfection and antimicrobial activity was investigated and compared with that of the hydrochloride salt C12-(N, N-dimethyl-N-(2-ureidoethan-1-aminium chloride)2 (C12(DUAC)2) of its precursor molecule.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!