We have recently taken advantage of the unique power of DNA microarrays to compare the genomic expression profile of tetrahydrogestrinone (THG) with that of dihydrotestosterone (DHT), the most potent natural androgen, thus clearly demonstrating that THG is an anabolic steroid. In 2004, the U.S. Controlled Substances Act has been modified to include androstenedione (4-dione) as an anabolic steroid. However, despite the common knowledge that dehydroepiandrosterone (DHEA) is the precursor of testosterone, DHEA has been excluded from the list of anabolic steroids. We thus used the same DNA microarray technology to analyze the expression profile of practically all the 30,000 genes of the mouse genome modulated by DHEA and DHT in classical androgen-sensitive tissues. Daily subcutaneous injections of DHT (0.1mg) or DHEA (3mg) for 1 month in gonadectomized C57BL6/129 SV mice increased ventral prostate, dorsal prostate, seminal vesicle and preputial gland weight (p<0.01 for all tissues). As early as 24h after single injection of the two steroids, 878, 2681 and 14 probe sets were commonly stimulated or inhibited (p<0.01, change> or =30%), in the prostate (ventral+dorsal), seminal vesicles and preputial glands, respectively, compared to tissues from gonadectomized control animals. After 7 days of daily treatment with DHEA and DHT, 629, 919 and 562 probe sets were commonly modulated in the same tissues while after 27 days of treatment, 1195, 5127 and 2883 probe sets were modulated, respectively. In analogy with the data obtained with THG, the present microarray data provide an extremely precise and unquestionable genomic signature and proof of the androgenic/anabolic activity of DHEA. Such data add to the literature showing that DHEA is transformed into androgens in the human peripheral tissues as well as in laboratory animal species, including the monkey, thus exerting potent androgenic/anabolic activity. The present microarray approach to identify anabolic compounds is applicable to all potential androgenic/anabolic compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jsbmb.2006.03.006DOI Listing

Publication Analysis

Top Keywords

anabolic steroid
12
dehydroepiandrosterone dhea
8
dihydrotestosterone dht
8
dht potent
8
potent natural
8
natural androgen
8
tetrahydrogestrinone thg
8
expression profile
8
anabolic
4
dhea anabolic
4

Similar Publications

Sex-Dependent Efficacy of Sphingosine-1-Phosphate Receptor Agonist FTY720 in Mitigating Huntington's Disease.

Pharmacol Res

December 2024

Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, N-0372 Oslo, Norway; Institute of Nutritional Medicine (INUM) and Lübeck Institute of Dermatology (LIED), University of Lübeck (UzL) and University Medical Center Schleswig-Holstein (UKSH), Ratzeburger Allee 160, D-23538 Lübeck, Germany; Faculty of Medicine and Life Sciences, University of Latvia, Jelgavas iela 3, LV-1004 Rīga, Latvia; School of Neurobiology, Biochemistry and Biophysics, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, IL-6997801, Israel. Electronic address:

Huntington's disease (HD) is a debilitating neurodegenerative disorder characterized by severe motor deficits, cognitive decline and psychiatric disturbances. An early and significant morphological hallmark of HD is the activation of astrocytes triggered by mutant huntingtin, leading to the release of inflammatory mediators. Fingolimod (FTY), an FDA-approved sphingosine-1-phosphate (S1P) receptor agonist is used to treat multiple sclerosis (MS), a neuroinflammatory disease, and has shown therapeutic promise in other neurological conditions.

View Article and Find Full Text PDF

The detection of endogenous anabolic androgenic steroids misuse in Asian population using the Steroidal Module of the Athlete Biological Passport (ABP) is a challenge due to the high prevalence of UGT2B17 gene deletion polymorphism with low levels of testosterone (T) glucuronide. In this study, the capabilities of different approaches based on urine analysis for the detection of oral T undecanoate administration were evaluated in 13 Asian volunteers, including 11 subjects with del/del genotype and 2 subjects with del/ins genotype. In the first part of the work, the effect on the urinary steroid profile (SP) and on the isotope ratio mass spectrometry markers was evaluated.

View Article and Find Full Text PDF

The detection of endogenous anabolic androgenic steroids misuse in Asian population using the Steroidal Module of the Athlete Biological Passport (ABP) is a challenge due to the high prevalence of UGT2B17 gene deletion polymorphism and low levels of testosterone (T) glucuronide. In this study, the capabilities of different approaches based on urine analysis for detecting oral T undecanoate administration were evaluated in 13 Asian volunteers, including 11 subjects with del/del genotype and 2 subjects with del/ins genotype. In this part of the work, the effect on the urinary steroid profile (SP) and the isotope ratio mass spectrometry (IRMS) markers were studied.

View Article and Find Full Text PDF

Research has identified the use of anabolic-androgenic steroids (AAS) as a gap between treatment needs and available facilities for substance use disorder (SUD) treatment in Norway. State policy emphasizes the need for measures to ensure coordinated treatment services. This study aims to explore whether clinical pathways of mental health and substance abuse and team-based organisation function as intended in the treatment of patients with AAS use.

View Article and Find Full Text PDF

The increasing prevalence of Anabolic-androgenic steroids (AAS) among women, driven by the pursuit of improved body aesthetics, characterized by higher lean mass and reduced adipose tissue, raises significant health concerns, particularly due to the limited knowledge regarding their effects on the female organism. Prolonged use and/or high doses of AAS are linked to various harmful side effects, including mood changes, psychiatric disorders, voice deepening, clitoromegaly, menstrual irregularities, and cardiovascular complications, prompting medical societies to discourage their widespread use due to insufficient evidence supporting their safety and efficacy. Studies in female rodents have shown that AAS can lead to increased aggression, inflammation, reduced neuronal density, and negative impacts on the myocardium and blood vessels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!