Percutaneous vertebroplasty (PVP) is carried out under fluoroscopic control in most centers. The exclusion of implant leakage and the assessment of implant distribution might be difficult to assess based on two-dimensional radiographic projection images only. We evaluated the feasibility of performing a follow-up examination after PVP with rotational acquisitions and volumetric reconstructions in the angio suite. Twenty consecutive patients underwent standard PVP procedures under fluoroscopic control. Immediate postprocedure evaluation of the implant distribution in the angio suite (BV 3000; Philips, The Netherlands) was performed using rotational acquisitions (typical parameters for the image acquisition included a 17-cm field-of-view, 200 acquired images for a total angular range of 180 degrees ). Postprocessing of acquired volumetric datasets included multiplanar reconstruction (MPR), maximum intensity projection (MIP), and volume rendering technique (VRT) images that were displayed as two-dimensional slabs or as entire three-dimensional volumes. Image evaluation included lesion and implant assessment with special attention given to implant leakage. Findings from rotational acquisitions were compared to findings from postinterventional CT. The time to perform and to postprocess the rotational acquisitions was in all cases less then 10 min. Assessment of implant distribution after PVP using rotational image acquisition methods and volumetric reconstructions was possible in all patients. Cement distribution and potential leakage sites were visualized best on MIP images presented as slabs. From a total of 33 detected leakages with CT, 30 could be correctly detected by rotational image acquisition. Rotational image acquisitions and volumetric reconstruction methods provided a fast method to control radiographically the result of PVP in our cases.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00270-005-0193-yDOI Listing

Publication Analysis

Top Keywords

rotational acquisitions
20
implant distribution
12
image acquisition
12
rotational image
12
percutaneous vertebroplasty
8
rotational
8
fluoroscopic control
8
implant leakage
8
assessment implant
8
pvp rotational
8

Similar Publications

Background: Tibiofemoral rotation is an emerging parameter, especially in assessing patellofemoral instability. However, reference values in the literature are inconsistent regarding the used imaging modality and do not consider the effect of knee flexion during image acquisition.

Purpose: To analyze the differences in tibiofemoral rotation measurements between computed tomography (CT) and magnetic resonance imaging (MRI).

View Article and Find Full Text PDF

Background: Rotator cuff repair (RCR) is a frequently performed outpatient orthopaedic surgery, with substantial financial implications for health-care systems. Time-driven activity-based costing (TDABC) is a method for nuanced cost analysis and is a valuable tool for strategic health-care decision-making. The aim of this study was to apply the TDABC methodology to RCR procedures to identify specific avenues to optimize cost-efficiency within the health-care system in 2 critical areas: (1) the reduction of variability in the episode duration, and (2) the standardization of suture anchor acquisition costs.

View Article and Find Full Text PDF

Among the numerous measurements carried out during a well-logging procedure, the Nuclear Magnetic Resonance (NMR) assessment is one of the fundamental analyses in determining the economic viability of a well for the oil industry. Nowadays, two reliable approaches, Wireline Logging (WL) and Logging While Drilling (LWD), stand out. WL comprises the acquisition of NMR data under static conditions.

View Article and Find Full Text PDF

Introduction: In this report, we present a cardiac ultrasound training module for medical student learners. The module assists medical students in developing foundational skills in image acquisition, identification of normal cardiac ultrasound anatomy, and demonstration of professionalism when performing the associated OSCE exam.

Methods: We delivered the module across a 2-week cardiology rotation.

View Article and Find Full Text PDF
Article Synopsis
  • Accurately determining the mechanical parameters of SiC/SiC composites is essential for designing effective turbine disc structures.
  • A 2D model of these composites was created using CT scanning and machine learning, and their mechanical properties were analyzed through uniaxial tensile tests and genetic algorithms.
  • The study found that simulation results closely matched experimental data, leading to validated finite element models for different turbine disc designs and their damage simulations.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!