Self-incompatibility (SI) prevents the production of "self" seed and inbreeding by providing a recognition and rejection system for "self," or genetically identical, pollen. Studies of gametophytic SI (GSI) species at a molecular level have identified two completely different S-genes and SI mechanisms. One GSI mechanism, which is found in the Solanaceae, Rosaceae and Scrophulariaceae, has S-RNase as the pistil S-component and an F-box protein as the pollen S-component. However, non-S-locus factors are also required. In an incompatible situation, the S-RNases degrade pollen RNA, thereby preventing pollen tube growth. Here, in the light of recent evidence, we examine alternative models for how compatible pollen escapes this cytotoxic activity. The other GSI mechanism, so far found only in the Papaveraceae, has a small secreted peptide, the S-protein, as its pistil S-component. The pollen S-component remains elusive, but it is thought to be a transmembrane receptor, as interaction of the S-protein with incompatible pollen triggers a signaling network, resulting in rapid actin depolymerization and pollen tube inhibition and programmed cell death (PCD). Here, we present an overview of what is currently known about the mechanisms involved in regulating pollen tube inhibition in these two GSI systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00425-006-0284-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!