The effects of the expression of yeast-derived apoplastic (AI) and cytosolic (CI) invertases (EC 3.2.1.26) on biomass and structural carbohydrate accumulation in tobacco (Nicotiana tabacum L. cv. Xanthi) were evaluated. Transgenic tobacco plants expressing AI or CI under the control of either a tandem repeat of the Cauliflower Mosaic Virus 35S promoter (2X35S), or a promoter that drives xylem-localized expression (Petroselinum crispum 4-coumarate:CoA ligase promoter; 4CL) were generated. Yeast-derived invertase transcript levels, invertase protein, enzyme activity, growth parameters as well as both structural and soluble carbohydrates of stem tissue of all transformed lines were quantified. Transgenic tobacco lines expressing invertase under the control of 4CL displayed severe growth retardation with both yeast-derived isogenes. Similarly, several transformed lines expressing either AI or CI regulated by the 2X35S promoter were also shorter than wild-type (WT) plants. Despite the decreases in height, some transformed lines had significant increases in biomass. One line (2X35S::AI-1) had a biomass/height increase of 88% and an increase in stem diameter of over 40%, while a second line (2X35S::CI-5) had a biomass/height increase of 21%. A separate line (2X35S::AI-2) had a 36% increase in cellulose content, while two others (4CL::AI-2 and 4CL::AI-3) displayed significant decreases in cellulose content. The observed phenotypes can be in part explained by the levels of foreign invertase present, subcellular localization and the carbohydrate status of the tissues.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00425-006-0313-1DOI Listing

Publication Analysis

Top Keywords

cellulose content
12
transformed lines
12
transgenic tobacco
8
2x35s promoter
8
lines expressing
8
biomass/height increase
8
varied growth
4
growth biomass
4
biomass cellulose
4
tobacco
4

Similar Publications

Bioethanol production is one of the key alternatives for fossil fuel use due to climate change. The study seeks to upscale tailor-made onsite enzyme blends for the bioconversion of cassava peels to bioethanol in simultaneous saccharification and fermentation (SSF) process using cassava peels-degrading fungi. The starch and cellulose contents of peels were determined.

View Article and Find Full Text PDF

Rac/Rop proteins, a kind of unique small GTPases in plants, play crucial roles in plant growth and development and in response to abiotic and biotic stresses. However, it is poorly understood whether cotton Rac/Rop protein genes are involved in mediating cotton resistance to Verticillium dahliae. Here, we focused on the function and mechanism of cotton Rac/Rop gene GhRac9 in the defense response to Verticillium dahliae infection.

View Article and Find Full Text PDF

The applicability of cellulose and its derivatives is greatly depends on their attributes such as aspect ratio, morphology, surface chemistry, crystallinity, as well as their thermal and mechanical properties. However, these attributes can alter according to the utilized raw material, size classifications, extraction techniques, or fibrillation methods. Among these, the effect of raw material particle size on cellulose properties has received limited attention in scientific studies.

View Article and Find Full Text PDF

The purpose of the current study was to explore the effects of Moringa oleifera feed on the taxonomy and function of the rumen microbial community, and further to evaluate its impact on milk yield and body weight in lactating goats. Nineteen goats were divided into moringa leaf diet (ML; n=10) and masoor straw (MS; n=9) groups. For each group fortnight milk yield and body weight was recorded.

View Article and Find Full Text PDF

Cellulose-based multifunctional materials with robust hydrophobic, antibacterial, and antioxidant properties through dynamic cross-linked network structures.

Int J Biol Macromol

January 2025

Key Lab of Paper Science and Technology of Ministry of Elucation, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China. Electronic address:

Environmental pollution and health problems caused by traditional non-degradable fossil-based plastics are significant concerns, rendering green and renewable bio-based materials, such as cellulose and C-Priamine (1074), as attractive substitutes. In particular, the low plasticity of cellulose can be optimized using soft alkyl chains. Herein, multifunctional cellulose-based materials were constructed via covalent adaptable networks using the Schiff base reaction of oxidized microcrystalline cellulose with varying aldehyde (dialdehyde cellulose (DAC)) contents and C-Priamine (1074).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!