We show numerically the existence of vibrating soliton pairs that are consistent with observations performed with a passively mode-locked fiber laser. These vibrating pairs are new types of multisoliton complexes that exist in the vicinity of the phase-locked soliton pairs discovered a few years ago [Opt. Lett.27, 966 (2002)]. The pairs are found numerically with a laser propagation model that includes nonlinear dissipation and cavity periodicity, and they can appear following a Hopf-type bifurcation when a cavity parameter is tuned.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ol.31.002115 | DOI Listing |
Phys Rev Lett
January 2025
Harvard University, Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138, USA.
Coupling is an essential mechanism that drives complexity in natural systems, transforming single, noninteracting elements into intricate networks with rich physical properties. Here, we demonstrate a chip-scale coupled laser system that exhibits complex optical states impossible to achieve in an uncoupled system. We show that a pair of coupled semiconductor ring lasers spontaneously forms a frequency comb consisting of the hybridized modes of its coupled cavity, exhibiting a large number of phase-locked tones that anticross with one another.
View Article and Find Full Text PDFSci Adv
January 2025
State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China.
Hong-Ou-Mandel (HOM) interference is the foundation of quantum optics to test the degree of indistinguishability of two incoming photons, playing a key role in quantum communication, sensing, and photonic quantum computing. Realizing high-visibility HOM interference with massively parallel optical channels is challenging due to the lack of available natural optical references for aligning independent arrayed laser pairs. Here, we demonstrate 50 parallel comb-teeth pairs of continuous-wave weak coherent photons HOM interference using two independently frequency post-aligned soliton microcombs (SMCs), achieving an average fringe visibility over 46%.
View Article and Find Full Text PDFNanomaterials (Basel)
September 2024
International Institute for Sustainability with Knotted Chiral Meta Matter, Kagamiyama, Higashihiroshima 739-8511, Hiroshima, Japan.
Light Sci Appl
May 2024
College of Communication Engineering, Jilin University, Changchun, 130012, China.
Temporal solitons have been the focus of much research due to their fascinating physical properties. These solitons can form bound states, which are fundamentally crucial modes in fiber laser and present striking analogies with their matter molecules counterparts, which means they have potential applications in large-capacity transmission and all-optical information storage. Although traditionally, second-order dispersion has been the dominant dispersion for conventional solitons, recent experimental and theoretical research has shown that pure-high-even-order dispersion (PHEOD) solitons with energy-width scaling can arise from the interaction of arbitrary negative-even-order dispersion and Kerr nonlinearity.
View Article and Find Full Text PDFSci Rep
March 2024
Department of Mathematics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 602 105, India.
The present research investigates the double-chain deoxyribonucleic acid model, which is important for the transfer and retention of genetic material in biological domains. This model is composed of two lengthy uniformly elastic filaments, that stand in for a pair of polynucleotide chains of the deoxyribonucleic acid molecule joined by hydrogen bonds among the bottom combination, demonstrating the hydrogen bonds formed within the chain's base pairs. The modified extended Fan sub equation method effectively used to explain the exact travelling wave solutions for the double-chain deoxyribonucleic acid model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!