Hepatitis B virus (HBV) infects more than 350 million people, of which one million will die every year. The infectious virion is an enveloped capsid containing the viral polymerase and double-stranded DNA genome. The structure of the capsid assembled in vitro from expressed core protein has been studied intensively. However, little is known about the structure and assembly of native capsids present in infected cells, and even less is known about the structure of mature virions. We used electron cryomicroscopy (cryo-EM) and image analysis to examine HBV virions (Dane particles) isolated from patient serum and capsids positive and negative for HBV DNA isolated from the livers of transgenic mice. Both types of capsids assembled as icosahedral particles indistinguishable from previous image reconstructions of capsids. Likewise, the virions contained capsids with either T = 3 or T = 4 icosahedral symmetry. Projections extending from the lipid envelope were attributed to surface glycoproteins. Their packing was unexpectedly nonicosahedral but conformed to an ordered lattice. These structural features distinguish HBV from other enveloped viruses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.molcel.2006.04.025 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!