A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Membrane conductance in trained and untrained subjects using either steady state or single breath measurements of NO transfer. | LitMetric

Membrane conductance in trained and untrained subjects using either steady state or single breath measurements of NO transfer.

Nitric Oxide

Laboratoire des Adaptations Physiologiques aux Activités Physiques, Faculté des Sciences du Sport Poitiers, UPRES-EA 3813, France.

Published: November 2006

The aim of this work was to define the relationship between membrane conductance for NO (Dm) and physical activity by using either the steady state NO transfer (T(LNO)SS) or the single breath method (T(LNO)SB), making the hypothesis that NO transfer is only limited by the membrane. Alterations in T(LNO)SS with lung volume during tidal ventilation were measured in six subjects at rest and during steady exercise at 30, 60, and 80% of maximal aerobic power (MAP). A fast responding chemoluminescent NO analyser was used. Two calculation methods were used by sampling NO: (1) at mid-tidal volume, (2) in the middle of the alveolar plateau. T(LNO)SB at rest and maximal oxygen consumption (V(.-)O(2)max) were also measured in 18 other subjects. At rest T(LNO)SS with method 2 was 192% of the value given by method 1. T(LNO)SS with method 1 increased by 50% with 80% MAP as it did not change with method 2. Method 2 seemed inaccurate. T(LNO)SB at rest, which is closely related to Dm, was correlated to age and V(.-)O(2)max, T(LNO)SB=182-1.2 age+24.3 V(.-)O(2) max(l min(-1)) (p<0.01, r(2)=0.72). The T(LNO)SS and T(LNO)SB versus lung volume relationships suggest an influence of the breathing pattern on Dm. Dm can be estimated either by these two NO transfer methods, however the use of the T(LNO)SS method is highly sensitive to the alveolar sampling level. Dm increase during exercise is a function of MAP. Dm at rest decreases with age as it increases with MAP.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.niox.2006.04.001DOI Listing

Publication Analysis

Top Keywords

membrane conductance
8
steady state
8
single breath
8
measured subjects
8
subjects rest
8
tlnosb rest
8
tlnoss method
8
method
6
conductance trained
4
trained untrained
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!