Titanium and its alloys are widely used as implant materials for dental and orthopaedic applications due to their advantageous bulk mechanical properties and biocompatibility, compared to other metallic biomaterials. In order to improve their wear and corrosion resistance, several surface modifications that give rise to an outer ceramic layer of rutile have been developed. The ability of rutile wear debris to stimulate the release of inflammatory cytokines from macrophages has not been addressed to date. We have compared the in vitro biocompatibility of sub-cytotoxic doses of rutile and titanium particles in THP-1 cells driven to the monocyte/macrophage differentiation pathway as well as in primary cultures of human macrophages. Confocal microscopy experiments indicated that differentiated THP-1 cells and primary macrophages efficiently internalised rutile and titanium particles. Treatment of THP-1 cells with rutile particles stimulated the release of TNF-alpha, IL-6 and IL-1beta to a lesser extent than titanium. The influence of osteoblasts on the particle-induced stimulation of TNF-alpha and IL-1beta was analysed by co-culturing differentiated THP-1 cells with human primary osteoblasts. Under these conditions, secretion levels of both cytokines after treatment of THP-1 cells with rutile particles were lower than after exposure to titanium. Finally, we observed that primary macrophages released higher amounts of TNF-alpha, IL-6 and IL-1beta after incubation with titanium particles than with rutile. Taken together, these data indicate that rutile particles are less bioreactive than titanium particles and, therefore, a higher biocompatibility of titanium-based implants modified with an outer surface layer of rutile is expected.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2006.05.045DOI Listing

Publication Analysis

Top Keywords

titanium particles
20
thp-1 cells
20
rutile titanium
12
rutile particles
12
rutile
10
titanium
8
particles
8
layer rutile
8
differentiated thp-1
8
primary macrophages
8

Similar Publications

TiO-sodium alginate core-shell nanosystem for higher antimicrobial wound healing application.

Int J Biol Macromol

January 2025

Department of Chemistry, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India; Functional Materials Laboratory, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India.

Wounds that are not properly managed can cause complications. Prompt and proper care is essential, to prevent microbial infection. Growing interest in metal oxide nanoparticles (NPs) for innovative wound treatments targeting healing and microbial infections.

View Article and Find Full Text PDF

This paper explores the process of forming arrays of vertically oriented carbon nanotubes (CNTs) localized on metal electrodes using thin porous anodic alumina (PAA) on a solid substrate. On a silicon substrate, a titanium film served as the electrode layer, and an aluminium film served as the base layer in the initial film structure. A PAA template was formed from the Al film using two-step electrochemical anodizing.

View Article and Find Full Text PDF

The performance of nanofluids is largely determined by their thermophysical properties. Optimizing these properties can significantly enhance nanofluid performance. This study introduces a hybrid strategy based on computational intelligence to determine the optimal conditions for ternary hybrid nanofluids.

View Article and Find Full Text PDF

Defect-Mediated Crystallization of the Particulate TiO Photocatalyst Grown by Atomic Layer Deposition.

J Phys Chem C Nanomater Interfaces

January 2025

Surface Science Laboratory, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland.

Nanopowders or films of pure and mixed oxides in nanoparticulate form have gained specific interest due to their applicability in functionalizing high-surface-area substrates. Among various other applications, our presented work primarily focuses on the behavior of TiO as a photocatalyst deposited by atomic layer deposition (ALD) on a quartz particle. The photocatalytic activity of TiO on quartz particles grown by ALD was studied in terms of ALD growth temperature and post-treatment heating rate.

View Article and Find Full Text PDF

Polymer-based nanocomposite coatings that are enhanced with nanoparticles have gained recognition as effective materials for antibacterial purposes, providing improved durability and biocidal effectiveness. This research introduces an innovative chitosan-based polymer nanocomposite, enhanced with titanium oxide nanopowders and carbon quantum dots. The material was synthesized via the sol-gel process and applied to 316L stainless steel through dip-coating.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!