Development of an effective vaccine for severe acute respiratory syndrome (SARS) remains to be a priority to prevent possible re-emergence of SARS coronavirus (SARS-CoV). We previously demonstrated that the receptor-binding domain (RBD) of SARS-CoV S protein is a major target of neutralizing antibodies. This suggests that the RBD may serve as an ideal vaccine candidate. Recombinant adeno-associated virus (rAAV) has been proven to be an effective system for gene delivery and vaccine development. In this study, a novel vaccine against SARS-CoV was developed based on the rAAV delivery system. The gene encoding RBD was cloned into a pAAV-IRES-hrGFP plasmid. The immunogenicity induced by the resulting recombinant RBD-rAAV was evaluated in BALB/c mice. The results demonstrated that (1) a single dose of RBD-rAAV vaccination could induce sufficient neutralizing antibody against SARS-CoV infection; (2) two more repeated doses of the vaccination boosted the neutralizing antibody to about 5 times of the level achieved by a single dose of the immunization and (3) the level of the antibody continued to increase for the entire duration of the experiment of 5.5 months. These results suggested that RBD-rAAV is a promising SARS candidate vaccine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7111904PMC
http://dx.doi.org/10.1016/j.virol.2006.03.049DOI Listing

Publication Analysis

Top Keywords

recombinant adeno-associated
8
adeno-associated virus
8
receptor-binding domain
8
severe acute
8
acute respiratory
8
respiratory syndrome
8
neutralizing antibodies
8
system gene
8
single dose
8
neutralizing antibody
8

Similar Publications

The approved intravenous adeno-associated virus (AAV) therapies are limited by the widespread prevalence of pre-existing anti-AAV antibodies in the general population, which are known to restrict patients' ability to receive gene therapy and limit transfection efficacy in vivo. To address this challenge, we have developed a novel recombinant human immunoglobulin G degrading enzyme KJ103, characterized by low immunogenicity and clinical value for the elimination of anti-AAV antibodies in gene transfer. Herein, we conducted two randomized, blinded, placebo-controlled, single ascending dose Phase I studies in China and New Zealand, to evaluate the pharmacokinetics, pharmacodynamics, safety and immunogenicity of KJ103 in healthy volunteers.

View Article and Find Full Text PDF

Interferon Inhibitors Increase rAAV Production in HEK293 Cells.

J Biotechnol

January 2025

Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854. Electronic address:

Recombinant adeno-associated viruses (rAAVs) comprise a promising viral vector for therapeutic gene delivery to treat disease. However, the current manufacturing capability of rAAVs must be improved to meet commercial demand. Previously published omics studies indicate that rAAV production through transient transfection triggers antiviral responses and endoplasmic reticulum stress responses in the host cell.

View Article and Find Full Text PDF

Recombinant adeno-associated virus (rAAV) has emerged as one of the best gene delivery vectors for human gene therapy in vivo. However, the clinical efficacy of rAAV gene therapy is often hindered by the host immune response against its transgene products. Endoplasmic reticulum aminopeptidase 1 (ERAP1) is specialised to process peptides presented by class I molecules of major histocompatibility complex.

View Article and Find Full Text PDF

Recombinant adeno-associated virus (rAAV) has emerged as the vector of choice for in vivo gene delivery, with numerous clinical trials underway for the treatment of various human diseases. Utilizing rAAV in gene therapy requires a highly precise quantification method to determine the viral genome titer and further establish the optimal therapeutic dosage for a rAAV product. The conventional single-channel droplet digital PCR (1D ddPCR) method offers only partial information regarding the viral vector genome titer, lacking insights into its integrity.

View Article and Find Full Text PDF

Choroid plexus-targeted viral gene therapy for alpha-mannosidosis, a prototypical neurometabolic lysosomal storage disease.

Hum Mol Genet

January 2025

Section on Translational Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.

The choroid plexuses (CP) are highly vascularized structures that project into the ventricles of the vertebrate brain. The polarized epithelia of the CP produce cerebrospinal fluid by transporting water and ions into the ventricles from the blood and normally secrete a large number of proteins. We assessed the feasibility of selective CP transduction with recombinant adeno-associated virus (rAAV) gene therapy vectors for treatment of lysosomal storage disease (LSD), a broad category of neurometabolic illness associated with significant burdens to affected patients and their families.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!