Objective: To evaluate the wear patterns of orthodontic archwires in dry and wet conditions in-vitro.

Methods: The patterns of wear of stainless steel and NiTi orthodontic archwires were investigated with a fretting wear tribometer fitted with an alumina ball. The tribometer was operated at 23 degrees C in three different environments: ambient air with 50 per cent relative humidity (RH), 0.9 wt. per cent sodium chloride solution and deionised water. Differences in the wear characteristics of the archwires were investigated by scanning electron microscopy. Energy Dispersive X-ray Analysis and Inductively Coupled Plasma Analysis were used to investigate the surface composition of the wires, the wear debris generated during fretting and the corrosion products in the test solutions.

Results: Both archwire materials were degraded by oxidational wear in ambient air. The NiTi wires were more resistant to wear than the stainless steel wires. In the aqueous media the stainless steel wires were degraded by abrasive wear, while the NiTi wires were degraded by adhesive wear.

Conclusion: In ambient air with 50 per cent RH, NiTi wires were more resistant to wear than stainless steel wires. Both archwire materials exhibited higher wear rates in the solutions than in air, indicating some synergism between the wear and corrosion processes. In the solutions the stainless steel archwires had a much lower corrosion-wear resistance than the NiTi archwires.

Download full-text PDF

Source

Publication Analysis

Top Keywords

stainless steel
20
orthodontic archwires
12
wear stainless
12
ambient air
12
niti wires
12
steel wires
12
wear
11
archwires dry
8
dry wet
8
archwires investigated
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!