The functions of the nucleolus responsible for the biosynthesis of ribosomes in altered gravity are still unclear. The location of nucleolar DNA both in control and simulated microgravity has been investigated using fluorescent and immunogold cytochemistry. We have determined the redistribution of rDNA in the nucleolar components accompanied by their ultrastructure changes. According to this the lowering of rDNA transcription level under simulated microgravity was supposed.

Download full-text PDF

Source

Publication Analysis

Top Keywords

nucleolar dna
8
simulated microgravity
8
[alterations nucleolar
4
dna localization
4
localization caused
4
caused simulated
4
simulated microgravity]
4
microgravity] functions
4
functions nucleolus
4
nucleolus responsible
4

Similar Publications

Interspecific hybridization between relative species (with a diploid genome designated as TT), (EE) and (NN) and the successive polyploidization with transitions from sexuality to asexuality experienced by triploid hybrids likely influence their chromosomal rearrangements, including rearrangements of ribosomal DNA (rDNA) distribution patterns. Previously, we documented distinct karyotypic differences: exhibited bi-armed chromosomes while showed uni-armed chromosomes with rDNA-positive hybridization signals, respectively. In this study, fluorescence in situ hybridization (FISH) with rDNA and rDNA probes was used to analyze and compare chromosomal distribution patterns of rDNAs in clonally reproduced triploid hybrids of different genomic constitutions ETT, ETN, EEN and EET (referred to using acronyms denoting the haploid genomes of their parent species), and their parental species.

View Article and Find Full Text PDF

Optimized protocol for single-cell isolation and alkaline comet assay to detect DNA damage in cells of Drosophila wing imaginal discs.

STAR Protoc

January 2025

Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, TN, Italy; Department of Medicine, NYU Langone Medical Center, New York, NY 10016, USA. Electronic address:

Reduced expression of nucleolar genes induces stress and DNA damage. Here, we present a protocol to analyze DNA fragmentation at the single-cell level in Drosophila imaginal discs using an optimized alkaline comet assay. We describe steps for larvae development, tissue disaggregation, and single-cell dissociation.

View Article and Find Full Text PDF

The representatives of the archamoebian genus Pelomyxa are amoeboid anaerobic protists that inhabit fresh-water anoxic sediments, and most of them are usually multinucleate. The cytoplasm of these unicellular organisms is highly complicated and contains numerous vacuoles of different types, as well as a wide range of prokaryotic endocytobionts, agglomerations of glycogen, lipids, etc. Among the great variety of cytoplasmic structures in P.

View Article and Find Full Text PDF

The nucleolus is a major subnuclear compartment where ribosomal DNA (rDNA) is transcribed and ribosomes are assembled. In addition, recent studies have shown that the nucleolus is a dynamic organizer of chromatin architecture that modulates developmental gene expression. rDNA gene units are assembled into arrays located in the p-arms of five human acrocentric chromosomes.

View Article and Find Full Text PDF

Prostate cancer (PCa) remains a critical global health challenge, with high mortality rates and significant heterogeneity, particularly in advanced stages. While early-stage PCa is often manageable with conventional treatments, metastatic PCa is notoriously resistant, highlighting an urgent need for precise biomarkers and innovative therapeutic strategies. This review focuses on the dualistic roles of sirtuins, a family of NAD+-dependent histone deacetylases, dissecting their unique contributions to tumor suppression or progression in PCa depending on the cellular context.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!