Some silica-based solids, prepared by the sol/gel method in the presence of high Mn2+ concentrations, have been characterized by the 29Si, 27Al MAS NMR spectra and 29Si T1 measurements. The single-pulse 29Si and 27Al MAS NMR spectra have shown broad spinning sideband patterns that are interpreted in terms of anisotropic bulky magnetic susceptibility (BMS) and dipole-field effects. In the absence of paramagnetic isotropic shifts, the 29Si and 27Al nuclei observed in the single-pulse NMR spectra have been assigned to nuclei remote from paramagnetic centers. It has been demonstrated that the 29Si and 27Al nuclei, which are in the vicinity of the manganese ions, can be detected by the Hahn-echo MAS NMR experiments at different carrier frequencies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mrc.1866 | DOI Listing |
Langmuir
December 2024
State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
Diffusion limitations and monofunctional acidity of ZSM-5 molecular sieves affect the catalyst stability and aromatic yield in the reaction of methanol to aromatics (MTA). In this study, based on ZSM-5 nanosheets as parent molecular sieves, Zn-modified hollow ZSM-5 nanosheets were obtained after hydrothermal treatment by adding ZIF-8 or zinc nitrate as a source of Zn while treating with different types and concentrations of alkali solutions. The physical and chemical properties of the fabricated samples and their catalytic performance of methanol aromatization were systematically investigated by a combination of XRD, TEM, N adsorption-desorption, NH-TPD, Py-IR, Al MAS NMR, Si MAS NMR, XPS, and TG characterization analyses and MTA experimental evaluation.
View Article and Find Full Text PDFMolecules
November 2024
Department of Nuclear Physics Research Methods, Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg 199034, Russia.
Unique structural and chemical properties, such as ion exchange, developed inner surface, etc., as well as the wide possibilities and flexibility of regulating these properties, cause a keen interest in zeolites. They are widely used in industry as molecular sieves, ion exchangers and catalysts.
View Article and Find Full Text PDFHeliyon
November 2024
Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar.
Halloysite nanotubes (HNTs) are naturally occurring aluminosilicate minerals, known for their unique tubular structure, which have garnered significant interest for a wide range of applications. This study explores the morphological changes of HNTs when subjected to thermal treatment ranging from 25 °C to 1100 °C using a combination of experimental characterization techniques and molecular dynamics simulations. Techniques such as solid-state NMR (SSNMR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) surface area measurements, and Fourier Transform Infrared Spectroscopy (FT-IR) were employed to analyse the structural evolution.
View Article and Find Full Text PDFJ Am Chem Soc
November 2024
Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan.
Fe-containing zeolites are effective catalysts in converting the greenhouse gases CH and NO into valuable chemicals. However, the activities of Fe-containing zeolites in methane conversion and NO decomposition are frequently conflated, and the activities of different Fe species are still controversial. Herein, Fe-containing aluminosilicate CHA zeolites with Fe species at different spatial distances affected by the arrangement of framework Al atoms were synthesized in a one-pot manner in the presence or absence of Na.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & State Key Laboratory of Silicate Materials for Architectures & School of Chemistry, Chemical Engineering and Life Sciences & Foshan Xianhu Laboratory & Laoshan Laboratory & School of Materials Science and Engineering & International School of Materials Science and Engineering & Nanostructure Research Centre, Wuhan University of Technology, Wuhan 430070, China.
Zeolites, the most technically important crystalline microporous materials, are indispensable cornerstones of chemical engineering because of their remarkable catalytic properties and adsorption capabilities. Numerous studies have demonstrated that the hierarchical engineering of zeolites can maximize accessible active sites and improve mass transport, which significantly decreases the internal diffusion limits to achieve the desired performance. However, the construction of hierarchical zeolites with ordered alignments and size-controlled substructures in a convenient way is highly challenging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!