Protein sequence contains clues to its function. Functional prediction from sequence presents a challenge particularly for proteins that have low or no sequence similarity to proteins of known function. Recently, machine learning methods have been explored for predicting functional class of proteins from sequence-derived properties independent of sequence similarity, which showed promising potential for low- and non-homologous proteins. These methods can thus be explored as potential tools to complement alignment- and clustering-based methods for predicting protein function. This article reviews the strategies, current progresses, and underlying difficulties in using machine learning methods for predicting the functional class of proteins. The relevant software and web-servers are described. The reported prediction performances in the application of these methods are also presented, which need to be interpreted with caution as they are dependent on such factors as datasets used and choice of parameters.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pmic.200500938DOI Listing

Publication Analysis

Top Keywords

machine learning
12
functional class
12
sequence similarity
12
predicting protein
8
independent sequence
8
learning methods
8
methods explored
8
predicting functional
8
class proteins
8
methods predicting
8

Similar Publications

Diagnosis of lung cancer using salivary miRNAs expression and clinical characteristics.

BMC Pulm Med

January 2025

Universal Scientific Education and Research Network (USERN), Tehran, Iran.

Objective: Lung cancer (LC), the primary cause for cancer-related death globally is a diverse illness with various characteristics. Saliva is a readily available biofluid and a rich source of miRNA. It can be collected non-invasively as well as transported and stored easily.

View Article and Find Full Text PDF

Background: Drug-drug interactions (DDIs) especially antagonistic ones present significant risks to patient safety, underscoring the urgent need for reliable prediction methods. Recently, substructure-based DDI prediction has garnered much attention due to the dominant influence of functional groups and substructures on drug properties. However, existing approaches face challenges regarding the insufficient interpretability of identified substructures and the isolation of chemical substructures.

View Article and Find Full Text PDF

Background: Bullying, encompassing physical, psychological, social, or educational harm, affects approximately 1 in 20 United States teens aged 12-18. The prevalence and impact of bullying, including online bullying, necessitate a deeper understanding of risk and protective factors to enhance prevention efforts. This study investigated the key risk and protective factors most highly associated with adolescent bullying victimization.

View Article and Find Full Text PDF

Optical techniques, such as functional near-infrared spectroscopy (fNIRS), contain high potential for the development of non-invasive wearable systems for evaluating cerebral vascular condition in aging, due to their portability and ability to monitor real-time changes in cerebral hemodynamics. In this study, thirty-six healthy adults were measured by single channel fNIRS to explore differences between two age groups using machine learning (ML). The subjects, measured during functional magnetic resonance imaging (fMRI) at Oulu University Hospital, were divided into young (age ≤ 32) and elderly (age ≥ 57) groups.

View Article and Find Full Text PDF

Athlete engagement is influenced by several factors, including cohesion, passion and mental toughness. Machine learning methods are frequently employed to construct predictive models as a result of their high efficiency. In order to comprehend the effects of cohesion, passion and mental toughness on athlete engagement, this study utilizes the relevant methods of machine learning to construct a prediction model, so as to find the intrinsic connection between them.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!