Persistence of transgenic and not transgenic extracellular DNA in soil and bacterial transformation.

Riv Biol

Department of Soil Science and Plant Nutrition, University of Florence, P.le delle Cascine, 28-50144 Florence, Italy.

Published: November 2006

The study of the fate of transgenic and not transgenic extracellular DNA in soil is of extreme relevance because the soil extracellular DNA pool represents a genetic reservoir that could be utilized as a source of food by any heterotrophic microorganism or genetic information by recipient eukaryotic and prokaryotic cells. Several data have clearly evidenced that extracellular DNA could persist in soil for long time maintaining a sufficient integrity of the molecule. Recent microcosm studies under laboratory conditions have evidenced that extracellular DNA molecule could be leached or raised up by capillarity. The persistence and movement of extracellular DNA molecule in soil suggest that the genetic information of extracellular DNA could be taken up by microorganisms temporarily and spatially separated. Several authors have studied the persistence and transformation efficiency of the extracellular DNA in soil demonstrating that there is a sharp discrepancy between its biological efficiency and its persistence; fragments of target DNA were detected after a long time in soil but no transformations were determined probably because the genetic information originally present in the complete DNA molecule could be lost by degradation. It is also important to underline that the frequency of gene transfer in soil is markedly limited by the few number of bacteria able to develop competence and that this physiological state is reached only under certain conditions. Furthermore the dilution of the transgene in the soil extracellular DNA pool drastically decreases chances for the uptake of the transgene. Anyway the importance of transformation in evolutionary terms, represents a valid reason to continue the investigation on the fate of extracellular DNA in soil.

Download full-text PDF

Source

Publication Analysis

Top Keywords

extracellular dna
40
dna soil
16
dna
12
dna molecule
12
extracellular
10
soil
10
transgenic transgenic
8
transgenic extracellular
8
soil extracellular
8
dna pool
8

Similar Publications

The cyclic GMP-AMP synthase-stimulator of the interferon gene (cGAS-STING) signaling pathway is considered an essential pattern recognition and effector pathway in the natural immune system and is mainly responsible for recognizing DNA molecules present in the cytoplasm and activating downstream signaling pathways to generate type I interferons (IFN-I) and other inflammatory factors. STING, a crucial junction protein in the innate immune system, exerts an essential role in host resistance to external pathogen invasion. The DNA introduced by pathogens or tumors is recognized by the cytoplasmic nucleic acid receptor cGAS, and a second messenger, cGAMP, is generated using intracellular guanosine triphosphate (GTP) and adenosine triphosphate (ATP).

View Article and Find Full Text PDF

Background: Sporadic aortic aneurysm and dissection (AAD) is a critical condition characterised by the progressive loss of vascular smooth muscle cells (VSMCs) and the breakdown of the extracellular matrix. However, the molecular mechanisms responsible for the phenotypic switch and loss of VSMCs in AAD are not fully understood.

Methods And Results: In this study, we employed a discovery-driven, unbiased approach.

View Article and Find Full Text PDF

A Neutrophil Extracellular Traps-Related Signature Predicts Clinical Outcomes and Identifies Immune Landscape in Ovarian Cancer.

J Cell Mol Med

December 2024

Department of Gynecology, School of Medicine, Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, China.

Ovarian cancer (OvCa) is the most lethal gynaecology malignancies worldwide. Neutrophil extracellular traps (NETs), net-like protein structures produced by activated neutrophils and DNA-histone complexes, have a central role in tumours, though haven't been fully explored in OvCa. We obtained transcriptome data from TCGA-OvCa database (n = 376) as training, ICGC-OvCa database (n = 111) as validation and GTEx database (n = 180) as controls.

View Article and Find Full Text PDF

Xeroderma pigmentosum group C (XPC) is a versatile protein crucial for sensing DNA damage in the global genome nucleotide excision repair (GG-NER) pathway. This pathway is vital for mammalian cells, acting as their essential approach for repairing DNA lesions stemming from interactions with environmental factors, such as exposure to ultraviolet (UV) radiation from the sun. Loss-of-function mutations in the XPC gene confer a photosensitive phenotype in XP-C patients, resulting in the accumulation of unrepaired UV-induced DNA damage.

View Article and Find Full Text PDF

Neutrophil extracellular traps formation and autophagy in bongkrekic acid exposed human neutrophils.

Toxicol In Vitro

December 2024

School of Animal Science and Technology, Foshan University, Foshan 528225, Guangdong Province, PR China. Electronic address:

Bongkrekic acid (BKA), a less well-known foodborne toxin, has been implicated in numerous poisoning incidents. Recent studies suggest that BKA exerts an impact on the immune system, particularly on innate immunity. The release of neutrophil extracellular traps (NETs) is relatively a newly-discovered mechanism involving innate immunity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!