Disturbance of intracellular trafficking plays a major role in several neurodegenerative disorders including Alzheimer or Parkinson's disease. The Chediak-Higashi syndrome (CHS), a life-threatening autosomal recessive disease with frequent mutations in the LYST gene, and its animal model, the beige mouse, are both characterized by lysosomal defects with accumulation of giant lysosomes. Clinically they manifest as hypopigmentation, abnormal bleeding and increased susceptibility to infection with various degrees of involvement of the nervous system. In the course of a recessive N-ethyl-N-nitrosurea (ENU) mutagenesis screen, we identified the first murine missense mutation in the lysosomal trafficking regulator gene (Lyst(Ing3618)) located at a highly conserved position in the WD40 protein domain. Nearly all described human Lyst alleles lead to protein truncation and fatal childhood CHS. Only four different missense mutations have been reported in patients with adolescent or adult forms of CHS involving the nervous system. Interestingly, the Lyst(Ing3618) model presents with a predominant neurodegenerative phenotype with progressive degeneration and loss of Purkinje cells and lacks severe impairment of the immune system. Therefore, the Lyst(Ing3618 )allele could represent a new model for adult CHS with neurological impairment. It could also provide an important tool to elucidate the role of neuronal lysosomal trafficking in the pathophysiology of neurodegeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00401-006-0092-6DOI Listing

Publication Analysis

Top Keywords

missense mutation
8
nervous system
8
lysosomal trafficking
8
mutation wd40
4
wd40 domain
4
domain murine
4
murine lyst
4
lyst linked
4
linked severe
4
severe progressive
4

Similar Publications

Variants in the SOX9 transactivation middle domain induce axial skeleton dysplasia and scoliosis.

Proc Natl Acad Sci U S A

January 2025

Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.

SOX9 is a crucial transcriptional regulator of cartilage development and homeostasis. Dysregulation of is associated with a wide spectrum of skeletal disorders, including campomelic dysplasia, acampomelic campomelic dysplasia, and scoliosis. Yet how variants contribute to the spectrum of axial skeletal disorders is not well understood.

View Article and Find Full Text PDF

Background: Pathogenic mutations in the CFTR gene disrupt the normal function of the chloride ion channel CFTR protein, resulting in Cystic Fibrosis (C.F.).

View Article and Find Full Text PDF

ATM Expression and Activation in Ataxia Telangiectasia Patients with and without Class Switch Recombination Defects.

J Clin Immunol

January 2025

Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children´s Medical Center, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd, Tehran, 14194, Iran.

Background: Ataxia telangiectasia mutated (ATM) kinase plays a critical role in DNA double-strand break (DSB) repair. Ataxia telangiectasia (A-T) patients exhibit abnormalities in immunoglobulin isotype expression and class switch recombination (CSR). This study investigates the role of residual ATM kinase expression and activity in the severity of A-T disease.

View Article and Find Full Text PDF

Background/objectives: α-Synuclein (α-syn) protein is a major pathological agent of familial Parkinson's disease (PD), and its levels and aggregations determine neurotoxicity in PD pathogenesis. Although the pathophysiological functions of α-syn have been extensively studied, its biological functions remain elusive, and there are reports of wild-type (WT) α-syn and two missense mutations of α-syn (A30P and A53T) inducing protective neuritogenesis through neurite outgrowth. However, the function of another α-syn mutation, E46K, has not been fully elucidated.

View Article and Find Full Text PDF

Variation in litter size (LS) in sheep is linked to genetic factors, including the Zona pellucida-3 (ZP3) gene, which plays a role in ovine reproductive processes. This study examined the association between ZP3 gene variations and LS in Kari sheep. Two groups of 160 Kari ewes were analysed: one consistently producing singletons and another producing twins, with occasional triplets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!