Secreted frizzled related protein 2 (sFRP2) decreases susceptibility to UV-induced apoptosis in primary culture of canine mammary gland tumors by NF-kappaB activation or JNK suppression.

Breast Cancer Res Treat

Department and Graduate Institute of Veterinary Medicine, College of Bio-resources and Agriculture, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 106, Taiwan.

Published: November 2006

Tumor formation can result from a decrease in cell death, as well as an increase in cell proliferation. In spite of the high incidence of mammary gland tumors (MGTs) in female dogs, the understanding of its etiology is still poor. Consistent with several proto-oncogenes (such as Wnt) for the mammary gland, sFRP2 is expressed in canine MGTs which is normally silent in the mammary gland. To elucidate the roles of SFRP2 in the tumorigenesis of MGTs, apoptosis regulation mediated by sFRP2 was investigated by overexpression of sFRP2 in MGT cells. DNA fragmentation and TUNEL assays showed a decreased susceptibility of the cells to UV-induced apoptosis in the context of sFRP2 overexpression. To analyze the pathways through which sFRP2 transduces anti-apoptosis signals, multiple-color immunofluorescence staining, immunoprecipitation, and immunoblotting were carried out. sFRP2 was found co-localized in the extracellular matrix of MGTs and the tyrosine phosphorylation of FAK was enhanced. Moreover, JNK was suppressed and NF-kB was activated in the cells expressing sFRP2 after UV-induced apoptosis analyzed by immunoblotting and electrophoretic mobility shift assay (EMSA). Taken together, these results suggest that sFRP2 exerts its anti-apoptotic function in mammary cancer cells through NF-kappaB activation or JNK suppression.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10549-006-9233-9DOI Listing

Publication Analysis

Top Keywords

mammary gland
16
uv-induced apoptosis
12
sfrp2
10
gland tumors
8
nf-kappab activation
8
activation jnk
8
jnk suppression
8
mammary
5
secreted frizzled
4
frizzled protein
4

Similar Publications

Cancer pain is one of the most common symptoms in patients with advanced cancer. In this study, we aimed to investigate the effects of the -related gene C (MrgC) receptors on bone cancer pain. Mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were measured after the inoculation of Walker 256 mammary gland carcinoma cells into the tibia of adult Sprague-Dawley rats.

View Article and Find Full Text PDF

The mismatch between the nutrient intake from the diet and the output by the mammary gland causes a negative energy balance in transition dairy cows, that, if excessive, can promote several metabolic disorders. Other relevant phenomena occur during transition, such as inflammation at calving and changes in immunocompetence, redox balance, and mineral metabolism. Despite the efforts, some aspects of the adaptive mechanisms observed in the transition period still need to be clarified.

View Article and Find Full Text PDF

This study sought to compare bacterial abundance and diversity in milk and feces of healthy lactating women with patients suffering from lactation mastitis, explore the pathogenesis of lactation mastitis, and develop new ideas for its treatment and prevention from a microbiological perspective. A total of 19 lactating mastitis patients and 19 healthy lactating women were recruited. Milk and fecal Specimens were obtained from both groups, and microbial community structure was analyzed using 16S rRNA gene sequencing.

View Article and Find Full Text PDF

GATA binding protein 3 (GATA3), a member of the GATA family transcription factors, is a key player in various physiological and pathological conditions. It is known for its ability to bind to the DNA sequence "GATA", which enables its key role in critical processes in multiple tissues and organs including the immune system, endocrine system, and nervous system. GATA3 also modulates cell differentiation, proliferation, and apoptosis via controlling gene expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!