Listeria monocytogenes can be used to deliver protein antigens or DNA and mRNA encoding such antigens directly into the cytosol of host cells because of its intracellular lifestyle. In this study, we compare the in vivo efficiencies of activation of antigen-specific CD8 and CD4 T cells when the antigen is secreted by L. monocytogenes or when antigen-encoding plasmid DNA or mRNA is released by self-destructing strains of L. monocytogenes. Infection of mice with self-destructing L. monocytogenes carriers delivering mRNA that encodes a nonsecreted form of ovalbumin (OVA) resulted in a significant OVA-specific CD8 T-cell response. In contrast, infection with L. monocytogenes delivering OVA-encoding DNA failed to generate specific T cells. Secretion of OVA by the carrier bacteria yielded the strongest immune response involving OVA-specific CD8 and CD4 T cells. In addition, we investigated the antigen delivery capacity of a self-destructing, virulence-attenuated L. monocytogenes aroA/B mutant. In contrast to the wild-type strain, this mutant exhibited only marginal liver toxicity when high doses (5 x 10(7) CFU per animal administered intravenously) were used, and it was also able to deliver sufficient amounts of secreted OVA into mice. Therefore, the results presented here could lay the groundwork for a rational combination of L. monocytogenes as an attenuated carrier for the delivery of protein and nucleic acid vaccines in novel vaccination strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1489688 | PMC |
http://dx.doi.org/10.1128/IAI.00112-06 | DOI Listing |
J Exp Bot
January 2025
Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China.
A well-constructed pollen wall is essential for pollen fertility, which relies on the contribution of tapetum. Our results demonstrate an essential role of the tapetum-expressed protein phosphatase 2A (PP2A) B'α and B'β in pollen wall formation. The b'aβ double mutant pollen grains harbored sticky remnants and tectum breakages, resulting in failed release.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China.
RAD52 plays crucial roles in several aspects of mammalian cells, including DNA double-strand breaks repair, viral infection, cancer development, and antibody class switching. To comprehensively elucidate the role of RAD52 in maintaining genome stability and uncover additional functions of RAD52 in mammals, we performed the transcriptomics and proteomics analysis of the liver of knockout mice. Transcriptomics analysis reveals overexpression of mitochondrial genes in the liver of knockout (RAD52KO) mice.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Center of Clinical and Preclinical Research MEDIPARK, Pavol Jozef Šafarik University, 04011 Košice, Slovakia.
Breast cancer (BC) is one of the most prevalent forms of cancer globally, and has recently become the leading cause of cancer-related mortality in women. BC is a heterogeneous disease comprising various histopathological and molecular subtypes with differing levels of malignancy, and each patient has an individual prognosis. Etiology and pathogenesis are complex and involve a considerable number of genetic alterations and dozens of alterations in non-coding RNA expression.
View Article and Find Full Text PDFPlants (Basel)
January 2025
College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi 830052, China.
Rice is exposed to attacks by the three most destructive pathogens, (), pv. (), and (), which cause substantial yield losses and severely threaten food security. To cope with pathogenic infections, rice has evolved diverse molecular mechanisms to respond to a wide range of pathogens.
View Article and Find Full Text PDFPlants (Basel)
December 2024
A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia.
Among the long non-coding RNAs that are currently recognized as important regulatory molecules influencing a plethora of processes in eukaryotic cells, circular RNAs (circRNAs) represent a distinct class of RNAs that are predominantly produced by back-splicing of pre-mRNA. The most studied regulatory mechanisms involving circRNAs are acting as miRNA sponges, forming R-loops with genomic DNA, and encoding functional proteins. In addition to circRNAs generated by back-splicing, two types of circRNAs capable of autonomous RNA-RNA replication and systemic transport have been described in plants: viroids, which are infectious RNAs that cause a number of plant diseases, and retrozymes, which are transcripts of retrotransposon genomic loci that are capable of circularization due to ribozymes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!