Neurons embedded in networks are thought to receive synaptic inputs that do not drive them on their own, but modulate the responsiveness to driving input. Although studies on brain slices have led to detailed knowledge of how nondriving input affects dendritic integration, its origin and functional implications remain unclear. We tackle this issue using an ensemble of fly wide-field visual interneurons. These neurons offer the opportunity not only to combine in vivo recording techniques and natural sensory stimulation but also to interpret electrophysiological results in a behavioral context. By targeted manipulation of the animal's visual input we find a pronounced modulating impact of nondriving input, whereas functionally important cellular properties like direction tuning and the coding of pattern velocity are left almost unaffected. We propose that the integration of functionally different synaptic inputs is a mechanism that immanently equalizes the ensemble's sensitivity irrespective of the specific stimulus conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.00170.2006DOI Listing

Publication Analysis

Top Keywords

synaptic inputs
12
functionally synaptic
8
visual interneurons
8
interneurons neurons
8
nondriving input
8
implications functionally
4
inputs neuronal
4
neuronal gain
4
gain computational
4
computational properties
4

Similar Publications

Tau pathology in the locus coeruleus (LC) is associated with several neurodegenerative conditions including Alzheimer's disease and frontotemporal dementia. Phosphorylated tau accumulates in the LC and results in inflammation, synaptic loss, and eventually cell death as the disease progresses. Loss of LC neurons and noradrenergic innervation is thought to contribute to the symptoms of cognitive decline later in disease.

View Article and Find Full Text PDF

Diverse sources of inhibition serve to modulate circuits and control cell assembly spiking across various timescales. For example, in hippocampus area CA1 the competition between inhibition and excitation organizes spike timing of pyramidal cells (PYR) in network events, including sharp wave-ripples (SPW-R). Specific cellular-synaptic sources of inhibition in SPW-R remain unclear, as there are >20 types of GABAergic interneurons in CA1.

View Article and Find Full Text PDF

Unlabelled: SYNGAP1 is a key Ras-GAP protein enriched at excitatory synapses, with mutations causing intellectual disability and epilepsy in humans. Recent studies have revealed that in addition to its role as a negative regulator of G-protein signaling through its GAP enzymatic activity, SYNGAP1 plays an important structural role through its interaction with post-synaptic density proteins. Here, we reveal that intrinsic excitability deficits and seizure phenotypes in heterozygous Syngap1 knockout (KO) mice are differentially dependent on Syngap1 GAP activity.

View Article and Find Full Text PDF

Generalized learning is a fundamental process observed across species, contexts, and sensory modalities that enables animals to use past experiences to adapt to changing conditions. Evidence suggests that the prefrontal cortex (PFC) extracts general features of an experience that can be used across multiple situations. The anterior cingulate cortex (ACC), a region of the PFC, is implicated in generalized fear responses to novel contexts.

View Article and Find Full Text PDF

The recognition of conspecifics, animals of the same species, and keeping track of changes in the social environment is essential to all animals. While molecules, circuits, and brain regions that control social behaviors across species are studied in-depth, the neural mechanisms that enable the recognition of social cues are largely obscure. Recent evidence suggests that social cues across sensory modalities converge in a thalamic area conserved across vertebrates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!