Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.200600822DOI Listing

Publication Analysis

Top Keywords

lipid-anchored oligonucleotides
4
oligonucleotides stable
4
stable double-helix
4
double-helix formation
4
formation distinct
4
distinct membrane
4
membrane domains
4
lipid-anchored
1
stable
1
double-helix
1

Similar Publications

Probing DNA-lipid membrane interactions with a lipopeptide nanopore.

ACS Nano

April 2012

Physics Department E14 and ZNN/WSI, Technische Universität München, Am Coulombwall 4a, 85748, Garching, Germany.

Association of DNA molecules with lipid bilayer membranes is of considerable interest for a large variety of applications in biotechnology. Here we introduce syringomycin E (SRE), a small pore-forming lipopeptide produced by the bacterium Pseudomonas syringae, as a facile sensor for the detection of DNA interactions with lipid membranes. SRE forms highly reproducible pores in cellular and artificial membranes.

View Article and Find Full Text PDF

Synthetic lipid-oligonucleotide conjugates inserted into lipid vesicles mediate fusion when one population of vesicles displays the 5'-coupled conjugate and the other the 3'-coupled conjugate, so that anti-parallel hybridization allows the membrane surfaces to come into close proximity. Improved assays show that lipid mixing proceeds more quickly and to a much greater extent than content mixing, suggesting the latter is rate limiting. To test the effect of membrane-membrane spacing on fusion, a series of conjugates was constructed by adding 2-24 noncomplementary bases at the membrane-proximal ends of two complementary sequences.

View Article and Find Full Text PDF

Morphogenesis of epithelial tissues relies on the precise developmental control of cell polarity and architecture. In the early Drosophila embryo, the primary epithelium forms during cellularisation, following a tightly controlled genetic programme where specific sets of genes are upregulated. Some of them, for example, control membrane invagination between the nuclei anchored at the apical surface of the syncytium.

View Article and Find Full Text PDF

Fluorescence interference contrast microscopy (FLIC) is a powerful method to structurally characterize fluorescent objects with nanometer-scale resolution in the z direction. Here we use FLIC to characterize the water layer underlying supported membranes and membrane-tethered double-stranded oligonucleotides. FLIC measurements of supported membranes containing the lipid-anchored fluorescent dye DiI in both leaflets indicate the thickness of the water layer separating the solid support and the lower lipid leaflet is 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!