The crustacean dactyl opener neuromuscular system has been studied extensively as a model system that exhibits several forms of synaptic plasticity. We report the ultrastructural features of the synapses on dactyl opener of the lobster (Homarus americanus) as determined by examination of serial thin sections. Several innervation sites supplied by an inhibitory motoneuron have been observed without nearby excitatory innervation, indicating that excitatory and inhibitory inputs to the muscle are not always closely matched. The ultrastructural features of the lobster synapses are generally similar to those described previously for the homologous crayfish muscle, with one major distinction: few dense bars are seen at the presynaptic membranes of these lobster synapses. The majority of the lobster neuromuscular synapses lack dense bars altogether, and the mean number of dense bars per synapse is relatively low. In view of the finding that the physiology of the lobster dactyl opener synapses is similar to that reported for crayfish, these ultrastructural observations suggest that the structural complexity of the synapses may not be a critical factor determining synaptic plasticity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00441-006-0221-5 | DOI Listing |
J Exp Biol
October 2014
Behavioral Neurobiology, Department of Biology, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan.
Animals spontaneously initiate goal-directed behavior including foraging action based on their appetitive motivation. The American lobster Homarus americanus exhibits grasping behavior with its crusher claw as feeding behavior that can be initiated after appropriate operant conditioning. In order to quantitatively characterize the goal-directed grasping behavior with a time resolution fine enough for neurophysiological analysis of its initiation and control mechanisms, we made simultaneous electromyographic (EMG) recording from grasping- and reaching-related muscles of the crusher claw while animals initiated grasping behavior.
View Article and Find Full Text PDFJ Exp Biol
March 2007
Department of Neuroscience, University of Virginia Health Science Center, Charlottesville, VA 22908-0230, USA.
In cold-blooded species the efficacy of neuromuscular function depends both on the thermal environmental of the animal's habitat and on the concentrations of modulatory hormones circulating within the animal's body. The goal of this study is to examine how temperature variation within an ecologically relevant range affects neuromuscular function and its modulation by the neurohormone serotonin (5-HT) in Homarus americanus, a lobster species that inhabits a broad thermal range in the wild. The synaptic strength of the excitatory and inhibitory motoneurons innervating the lobster dactyl opener muscle depends on temperature, with the strongest neurally evoked muscle movements being elicited at cold (<5 degrees C) temperatures.
View Article and Find Full Text PDFCell Tissue Res
December 2006
Department of Neuroscience, University of Virginia, P.O. Box 801392, Charlottesville, VA 22908, USA.
The crustacean dactyl opener neuromuscular system has been studied extensively as a model system that exhibits several forms of synaptic plasticity. We report the ultrastructural features of the synapses on dactyl opener of the lobster (Homarus americanus) as determined by examination of serial thin sections. Several innervation sites supplied by an inhibitory motoneuron have been observed without nearby excitatory innervation, indicating that excitatory and inhibitory inputs to the muscle are not always closely matched.
View Article and Find Full Text PDFJ Exp Biol
April 2006
Department of Neuroscience, University of Virginia, Charlottesville, 22908, USA.
The dactyl opener neuromuscular system of crayfish and lobster has long been a popular model system for studies of synaptic physiology and its modulation. Previous studies of its neural innervation in both species have reported that whereas the opener excitor axon (OE) and the specific opener inhibitor (OI) innervate the entire muscle, the common inhibitor (CI) is restricted to a small number of the most proximal muscle fibers and is the physiologically weaker of the two inhibitors. Here, we show in the lobster that, contrary to previous reports, CI innervates fibers along the entire extent of the dactyl opener muscle and thus shares the innervation targets of OE and OI.
View Article and Find Full Text PDFJ Comp Neurol
October 2003
The Otto Loewi Minerva Center for Cellular and Molecular Neurobiology, The Hebrew University, Jerusalem 91904, Israel.
The opener muscle of the dactyl of the walking leg of crayfish is innervated by one excitatory axon releasing glutamate and one inhibitory axon releasing GABA. Functional GABA(A) receptors are present postsynaptically on the muscle and presynaptically on terminals and release boutons of the excitatory axon, whereas presynaptic GABA(A) autoreceptors have not been reported on terminals or release boutons of the inhibitory axon. Using antibodies raised against mammalian GABA(A) receptor subunits alpha3 and beta(2/3), we obtained highly specific staining of the presynaptic membrane of the inhibitory bouton and of the postsynaptic membrane of the muscle.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!