Dysregulation of IL-15-mediated T-cell homeostasis in TGF-beta dominant-negative receptor transgenic mice.

Blood

Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, CRC/3-3288, 10 Center Drive, Bethesda, MD 20892, USA.

Published: October 2006

T-cell subpopulations, defined by their expression of CD4, CD8, naive, and memory cell-surface markers, occupy distinct homeostatic compartments that are regulated primarily by cytokines. CD8+ memory T cells, as defined by CD44(hi) surface expression, are dependent on IL-15 as a positive regulator of their homeostatic maintenance. Manipulation of IL-15 signaling through gene aberration, overexpression, or receptor alterations has been shown to dramatically affect T-cell homeostasis, with overexpression leading to fatal leukemia. Here we show that TGF-beta is the critical negative regulator of murine CD8+ memory T-cell homeostasis with direct opposition to the positive effects of IL-15. This negative regulation is mediated, at least in part, by the ability of TGF-beta to modulate expression of the beta-chain of the IL-15 receptor, thus establishing a central axis between these 2 cytokines for homeostatic control of CD8+ memory T-cell populations. These data establish TGF-beta as a critical and dominant tumor-suppressor pathway opposing IL-15-mediated CD8+ T-cell expansion and potential malignant transformation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1895588PMC
http://dx.doi.org/10.1182/blood-2006-05-025676DOI Listing

Publication Analysis

Top Keywords

t-cell homeostasis
12
cd8+ memory
12
tgf-beta critical
8
memory t-cell
8
t-cell
6
dysregulation il-15-mediated
4
il-15-mediated t-cell
4
tgf-beta
4
homeostasis tgf-beta
4
tgf-beta dominant-negative
4

Similar Publications

Tumor-derived extracellular vesicle PD-1 promotes tumor immune evasion via disruption of peripheral T cell homeostasis.

Cancer Lett

January 2025

Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China. Electronic address:

The programmed cell death 1 (PD-1)/PD-1 ligand 1 (PD-L1) axis mediates immune evasion of tumor, and targeting this axis has achieved some clinical benefits. The regulation of PD-1 expression in immune cells has been well studied. However, whether any other potential source of immune cell-expressed PD-1 exists remains unknown.

View Article and Find Full Text PDF

Arginine metabolism in myeloid cells in health and disease.

Semin Immunopathol

January 2025

Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.

Metabolic flexibility is key for the function of myeloid cells. Arginine metabolism is integral to the regulation of myeloid cell responses. Nitric oxide (NO) production from arginine is vital for the antimicrobial and pro-inflammatory responses.

View Article and Find Full Text PDF

Background: Circulating levels of the female hormone estrogen has been associated with the development of Parkinson's disease (PD), although the underlying mechanism remains unclear. Immune homeostasis mediated by peripheral regulatory T cells (Treg) is a crucial factor in PD. The aim of this study was to explore the effects of estrogen deficiency on neuroinflammation and neurodegeneration in a rodent model of PD, with particular reference to Treg.

View Article and Find Full Text PDF

SLC39A10 is a key zinc transporter in T cells and its loss mitigates autoimmune disease.

Sci China Life Sci

January 2025

The Second Affiliated Hospital, The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.

Zinc homeostasis plays an essential role in maintaining immune function and is tightly regulated by zinc transporters. We previously reported that the zinc transporter SLC39A10, located in the cell membrane, critically regulates the susceptibility of macrophages to inflammatory stimuli; however, the functional role of SLC39A10 in T cells is currently unknown. Here, we identified two SNPs in SLC39A10 that are associated with inflammatory bowel disease (IBD).

View Article and Find Full Text PDF

Molecular Hydrogen Modulates T Cell Differentiation and Enhances Neuro-Regeneration in a Vascular Dementia Mouse Model.

Antioxidants (Basel)

January 2025

Department of Neurosurgery, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Ansan 15355, Republic of Korea.

This study explores whether molecular hydrogen (H) administration can alleviate cognitive and immunological disturbances in a mouse model of vascular dementia (VaD). Adult male C57BL/6 mice underwent bilateral common carotid artery stenosis to induce VaD and were subsequently assigned to three groups: VaD, VaD with hydrogen-rich water treatment (VaD + H), and Sham controls. Behavioral assessments using open field and novel object recognition tests revealed that VaD mice exhibited anxiety-deficient behavior and memory impairment, both of which were reversed by H treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!