The retinoid-related molecules (RRMs) ST1926 [(E)-3-(4'-hydroxy-3'-adamantylbiphenyl-4-yl)acrylic acid] and CD437 (6-[3-(1-adamantyl)-4-hydroxyphenyl]-2-naphthalene carboxylic acid) are promising anticancer agents. We compared the retinoic acid receptor (RAR) trans-activating properties of the two RRMs and all-trans-retinoic acid (ATRA). ST1926 and CD437 are better RARgamma agonists than ATRA. We used three teratocarcinoma cell lines to evaluate the significance of RARgamma in the activity of RRMs: F9-wild type (WT); F9gamma-/-, lacking the RARgamma gene; F9gamma51, aF9gamma-/-derivative, complemented for the RARgamma deficit. Similar to ATRA, ST1926 and CD437 activate cytodifferentiation only in F9-WT cells. Unlike ATRA, ST1926 and CD437 arrest cells in the G2/M phase of the cell cycle and induce apoptosis in all F9 cell lines. Our data indicate that RARgamma and the classic retinoid pathway are not relevant for the antiproliferative and apoptotic activities of RRMs in vitro. Increases in cytosolic calcium are fundamental for apoptosis, in that intracellular calcium chelators abrogate the process. Comparison of the gene expression profiles associated with ST1926 and ATRA in F9-WT and F9gamma-/-indicates that the RRM activates a conspicuous nonretinoid response in addition to the classic and RAR-dependent pathway. The pattern of genes regulated by ST1926 selectively, in a RARgamma-independent manner, provides novel insights into the possible molecular determinants underlying the activity of RRMs in vitro. Furthermore, it suggests that RARgamma-dependent responses are relevant to the activity of RRMs in vivo. Indeed, the receptor hinders the antitumor activity in vivo, in that both syngeneic and immunosuppressed SCID mice bearing F9gamma-/- tumors have increased life spans after treatment with ST1926 and CD437 relative to their F9-WT counterparts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/mol.106.023614 | DOI Listing |
Am J Cancer Res
January 2018
Department of Biochemistry and Molecular Genetics, American University of BeirutBeirut, Lebanon.
Despite advances in therapeutic strategies, colorectal cancer (CRC) remains the third cause of cancer-related deaths with a relatively low survival rate. Resistance to standard chemotherapy represents a major hurdle in disease management; therefore, developing new therapeutic agents demands a thorough understanding of their mechanisms of action. One of these compounds is ST1926, an adamantyl retinoid that has shown potent antitumor activities in several human cancer models.
View Article and Find Full Text PDFMol Cancer Ther
September 2008
Laboratory of Molecular Biology, Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri, via La Masa 19, 20157 Milan, Italy.
Retinoid-related molecules (RRM) are novel agents with tumor-selective cytotoxic/antiproliferative activity, a different mechanism of action from classic retinoids and no cross-resistance with other chemotherapeutics. ST1926 and CD437 are prototypic RRMs, with the former currently undergoing phase I clinical trials. We show here that ST1926, CD437, and active congeners cause DNA damage.
View Article and Find Full Text PDFBiochem Pharmacol
March 2007
Division of Pediatric Oncology, Catholic University of Rome, Largo A Gemelli 8, 00168 Rome, Italy.
E-3-(4'-Hydroxy-3'-adamantylbiphenyl-4-yl)acrylic acid (ST1926) is a novel orally available compound belonging to the class of synthetic atypical retinoids. These agents are attracting growing attention because of their unique mechanism of antitumor action that appears different from that of classical retinoic acid. This study aims at investigating the antitumor activity of ST1926 in neuroblastoma (NB) preclinical models.
View Article and Find Full Text PDFMol Pharmacol
September 2006
Institut de Genetique et Biologie Moleculaire, Illkirch, France.
The retinoid-related molecules (RRMs) ST1926 [(E)-3-(4'-hydroxy-3'-adamantylbiphenyl-4-yl)acrylic acid] and CD437 (6-[3-(1-adamantyl)-4-hydroxyphenyl]-2-naphthalene carboxylic acid) are promising anticancer agents. We compared the retinoic acid receptor (RAR) trans-activating properties of the two RRMs and all-trans-retinoic acid (ATRA). ST1926 and CD437 are better RARgamma agonists than ATRA.
View Article and Find Full Text PDFCancer Biol Ther
May 2006
Department of Thoracic/Head and Neck Medical Oncology, The University of Texas, MD Anderson Cancer Center, Houston, Texas 77030, USA.
Growth and Differentiation Factor-15 (GDF-15, NAG-1, MIC-1) is induced by several apoptosis-inducing agents including the retinoid-related molecule (RRM) 6-[3-(1-adamantyl-4-hydroxyphenyl]-2-naphthalene carboxylic acid (CD437). It has been suggested that GDF-15 may be involved in the induction of apoptosis by CD437 in H460 lung cancer cells. The present study was designed to probe this hypothesis more directly.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!