ACE2 gene transfer attenuates hypertension-linked pathophysiological changes in the SHR.

Physiol Genomics

Department of Physiology and Functional Genomics, College of Medicine, and Advanced Magnetic Resonance Imaging and Spectroscopy Facility at the McKnight Brain Institute, University of Florida, Gainesville, Florida 32610, USA.

Published: October 2006

Recently discovered, angiotensin-converting enzyme-2 (ACE2) is an important therapeutic target in the control of cardiovascular diseases as a result of its proposed central role in the control of angiotensin peptides. Thus our objective in the present study was to determine whether ACE2 gene transfer could decrease high blood pressure (BP) and would improve cardiac dysfunctions induced by hypertension in the spontaneously hypertensive rat (SHR) model. Five-day-old SHR and normotensive WKY rats received a single intracardiac bolus injection of lentiviral vector containing either murine ACE2 (ACE2) or control enhanced green fluorescent protein (EGFP) genes. Systolic BP, cardiac functions, and perivascular fibrosis were evaluated 4 mo after ACE2 gene transduction. ACE2 gene transfer resulted in a significant attenuation of high BP in the SHR (149 +/- 2 mmHg in lenti-ACE2 vs. 180 +/- 9 mmHg in lenti-EGFP, P < 0.01). In contrast, no significant effect of lenti-ACE2 on BP of WKY rats was observed. Lenti-ACE2-treated SHR showed an 18% reduction in left ventricular wall thickness (1.52 +/- 0.04 vs. 1.86 +/- 0.04 mm in lenti-EGFP, P < 0.01). In addition, there was a 12% increase in left ventricular end diastolic and a 21% increase in end systolic diameters in lenti-ACE2-treated SHR. Finally, lenti-ACE2 treatment resulted in a significant attenuation of perivascular fibrosis in the SHR. In contrast, ACE2 gene transfer did not influence any of these parameters in WKY rats. These observations demonstrate that ACE2 overexpression exerts protective effects on high BP and cardiac pathophysiology induced by hypertension in the SHR.

Download full-text PDF

Source
http://dx.doi.org/10.1152/physiolgenomics.00312.2005DOI Listing

Publication Analysis

Top Keywords

ace2 gene
20
gene transfer
16
wky rats
12
ace2
9
shr
8
induced hypertension
8
perivascular fibrosis
8
+/- mmhg
8
lenti-egfp 001
8
lenti-ace2-treated shr
8

Similar Publications

Highly mutable pathogens generate viral diversity that impacts virulence, transmissibility, treatment, and thwarts acquired immunity. We previously described C19-SPAR-Seq, a high-throughput, next-generation sequencing platform to detect SARS-CoV-2 that we here deployed to systematically profile variant dynamics of SARS-CoV-2 for over 3 years in a large, North American urban environment (Toronto, Canada). Sequencing of the ACE2 receptor binding motif and polybasic furin cleavage site of the Spike gene in over 70,000 patients revealed that population sweeps of canonical variants of concern (VOCs) occurred in repeating wavelets.

View Article and Find Full Text PDF

To combat the SARS-CoV-2 pandemic, innovative prevention strategies are needed, including reducing ACE2 expression on respiratory cells. This study screened approved drugs in China for their ability to downregulate ACE2. Daphnetin (DAP) was found to significantly reduce ACE2 mRNA and protein levels in PC9 cells.

View Article and Find Full Text PDF

Introduction: To analyze the molecular pathogenesis of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), a small animal model such as mice is needed: human angiotensin converting enzyme 2 (hACE2), the receptor of SARS-CoV-2, needs to be expressed in the respiratory tract of mice.

Methods: We conferred SARS-CoV-2 susceptibility in mice by using an adenoviral vector expressing hACE2 driven by an elongation factor 1α (EF1α) promoter with a leftward orientation.

Results: In this model, severe pneumonia like human COVID-19 was observed in SARS-CoV-2-infected mice, which was confirmed by dramatic infiltration of inflammatory cells in the lung with efficient viral replication.

View Article and Find Full Text PDF

Blockade of PVN neuromedin B receptor alleviates inflammation via the RAS/ROS/NF-κB pathway in spontaneously hypertensive rats.

Brain Res Bull

December 2024

Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China. Electronic address:

Neuromedin B (NMB) has potentially great impacts on the development of cardiovascular diseases by promoting hypertensive and sympatho-excitation effects. However, studies regarding the NMB function in paraventricular nucleus (PVN) are lacking. With selective neuromedin B receptor (NMBR) antagonist, BIM-23127, we aim to determine whether the blockade of NMB function in PVN could alleviate central inflammation and attenuate hypertensive responses.

View Article and Find Full Text PDF

Background: The renal renin-angiotensin system (RAS) plays a vital part in the control of blood pressure and is known to be affected by aging. This study aimed to investigate the effects of intermittent fasting on age-related hypertension and the expression of local renal RAS components.

Methods: The Wistar rats were categorized into three main age groups (young, middle aged, and elderly) and three dietary treatment models, including ad libitum feeding (AL), every other day fasting (EOD), and one day per week of fasting (FW).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!