Active and passive displacement of transmembrane domains both occur during opsin biogenesis at the Sec61 translocon.

J Cell Sci

Faculty of Life Sciences, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK.

Published: July 2006

We used a site-specific crosslinking approach to study the membrane integration of the polytopic protein opsin at the endoplasmic reticulum. We show that transmembrane domain 1 occupies two distinct Sec61-based environments during its integration. However, transmembrane domains 2 and 3 exit the Sec61 translocon more rapidly in a process that suggests a displacement model for their integration where the biosynthesis of one transmembrane domain would facilitate the exit of another. In order to investigate this hypothesis further, we studied the integration of the first and third transmembrane domains of opsin in the absence of any additional C-terminal transmembrane domains. In the case of transmembrane domain 1, we found that its lateral exit from the translocon is clearly dependent upon the synthesis of subsequent transmembrane domains. By contrast, the lateral exit of the third transmembrane domain occurred independently of any such requirement. Thus, even within a single polypeptide chain, distinct transmembrane domains display different requirements for their integration through the endoplasmic reticulum translocon, and the displacement of one transmembrane domain by another is not a global requirement for membrane integration.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.03018DOI Listing

Publication Analysis

Top Keywords

transmembrane domains
24
transmembrane domain
20
transmembrane
11
displacement transmembrane
8
sec61 translocon
8
membrane integration
8
endoplasmic reticulum
8
third transmembrane
8
lateral exit
8
domains
6

Similar Publications

Renal ciliopathies are a genetically and phenotypically heterogeneous group of diseases characterized by cystic and dysplastic kidneys. The aim of this study was to investigate the correlation between genetic changes that cause renal ciliopathies and phenotypic outcomes. The study group consisted of 137 patients diagnosed with renal ciliopathy disease.

View Article and Find Full Text PDF

In the context of the oral cavity, an organic layer known as the mucosal pellicle (MP) adheres to the surface of the oral epithelium, playing a pivotal role in lubricating and safeguarding oral tissues. The formation of the MP is driven by interactions between a transmembrane mucin known as MUC1, located on the oral epithelium, and salivary secreted mucin, namely MUC5B and MUC7. This study aimed to investigate the function of MUC1 and the influence of its structure on MP lubrication properties.

View Article and Find Full Text PDF

Optimizing encephalomyocarditis virus VP1 protein assembly on pseudorabies virus envelope via US9 protein anchoring.

Virulence

December 2025

The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China.

Live herpesvirus-vectored vaccines are critical in veterinary medicine, but they can sometimes offer insufficient protection due to suboptimal antigen expression or localization. Encephalomyocarditis virus (EMCV) is a significant zoonotic threat, with VP1 protein as a key immunogen on its capsid. To enhance immunogenicity, we explored the use of recombinant pseudorabies virus (rPRV) as a vaccine vector against EMCV.

View Article and Find Full Text PDF

Polar Networks Mediate Ion Conduction of the SARS-CoV-2 Envelope Protein.

J Am Chem Soc

December 2024

Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States.

The SARS-CoV-2 E protein conducts cations across the cell membrane to cause pathogenicity to infected cells. The high-resolution structures of the E transmembrane domain (ETM) in the closed state at neutral pH and in the open state at acidic pH have been determined. However, the ion conduction mechanism remains elusive.

View Article and Find Full Text PDF

Background: The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly become a global health concern. The entry of the virus into host cells is facilitated by the transmembrane protease serine 2 (TMPRSS2) receptor, and genetic variations in the TMPRSS2 gene may influence disease susceptibility. However, there is a lack of knowledge regarding TMPRSS2 genetic variants and haplotypes in the Jordanian population.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!