Calsenilin/potassium channel-interacting protein (KChIP)3/ downstream regulatory element sequence antagonist modulator (DREAM) is a neuronal calcium-binding protein that has been shown to have multiple functions in the cell, including the regulation of presenilin processing, repression of transcription and modulation of A-type potassium channels. To gain a better understanding of the precise role of calsenilin in specific cellular compartments, an interactor hunt for proteins that bind to the N-terminal domain of calsenilin was carried out. Using a yeast two-hybrid system and co-immunoprecipitation studies, we have identified the transcriptional co-repressor C-terminal binding protein (CtBP)2 as an interactor for calsenilin and have shown that the two proteins can interact in vivo. In co-immunoprecipitation studies, calsenilin also interacted with CtBP1, a CtBP2 homolog. Our data also showed a calsenilin-dependent increase in c-fos protein levels in CtBP knockout fibroblasts, suggesting that CtBP may modulate the transcriptional repression of c-fos by calsenilin. Furthermore, the finding that histone deacetylase protein and activity were associated with the calsenilin-CtBP immunocomplex suggests a mechanism by which calsenilin-CtBP may act to repress transcription. Finally, we demonstrated that calsenilin and CtBP are present in synaptic vesicles and can interact in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1471-4159.2006.03972.xDOI Listing

Publication Analysis

Top Keywords

transcriptional co-repressor
8
co-repressor c-terminal
8
c-terminal binding
8
co-immunoprecipitation studies
8
interact vivo
8
calsenilin
7
protein
5
calsenilin interacts
4
interacts transcriptional
4
binding proteins
4

Similar Publications

OsMYB1 antagonizes OsSPL14 to mediate rice resistance to brown planthopper and Xanthomonas oryzae pv. oryzae.

Plant Cell Rep

December 2024

CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.

OsMYB1 negatively mediates rice resistance to brown planthopper and rice blight. Additionally, OsMYB1 interacts with OsSPL14 and antagonizes its function by oppositely regulating downstream resistance-related genes. In their natural habitats, plants are concurrently attacked by different biotic factors.

View Article and Find Full Text PDF
Article Synopsis
  • Dentatorubral-pallidoluysian atrophy (DRPLA) is a neurodegenerative disease characterized by symptoms like ataxia, dementia, and epilepsy, caused by an expansion of CAG repeats in the ATROPHIN 1 (ATN1) gene.
  • Researchers developed Drosophila (fruit fly) models that express either normal ATN1 (Q7) or a pathogenic version with expanded repeats (Q88), revealing that the pathogenic variant significantly reduces fly motility, lifespan, and affects internal structures more severely than the normal version.
  • RNA sequencing identified pathways related to protein quality control that are altered by pathogenic ATN1, and subsequent genetic experiments highlighted the
View Article and Find Full Text PDF

Acute MeCP2 loss in adult mice reveals transcriptional and chromatin changes that precede neurological dysfunction and inform pathogenesis.

Neuron

December 2024

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA. Electronic address:

Mutations in the X-linked methyl-CpG-binding protein 2 (MECP2) gene cause Rett syndrome, a severe childhood neurological disorder. MeCP2 is a well-established transcriptional repressor, yet upon its loss, hundreds of genes are dysregulated in both directions. To understand what drives such dysregulation, we deleted Mecp2 in adult mice, circumventing developmental contributions and secondary pathogenesis.

View Article and Find Full Text PDF

Retinoid-related orphan receptor-γ (RORγ) is a nuclear receptor that plays important roles in the development and activation of T helper type-17 (Th17) cells. In this study, we characterized the pharmacological profile of JTE-151 ((4S)-6-[(2-chloro-4-methylphenyl)amino]-4-{4-cyclopropyl-5-[cis-3-(2,2-dimethylpropyl)cyclobutyl]isoxazol-3yl}-6-oxohexanoic acid), which is a novel RORγ antagonist identified by our group. JTE-151 dissociated co-activator peptide from the human RORγ-ligand binding domain (LBD) and recruited co-repressor peptide into human RORγ-LBD, and potently inhibited the transcriptional activity of RORγ of human, mouse and rat.

View Article and Find Full Text PDF

Many aspects of inflammation increase with aging in mice and humans. Transcriptomic analysis revealed that many murine anti-aging interventions produce lower levels of pro-inflammatory proteins. Here, we explore the hypothesis that different longevity interventions diminish NF-κB levels, potentially mediating some of the anti-inflammatory benefits of lifespan-extending interventions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!