The membrane-embedded, ligand-gated P2X glycoprotein receptor is a monovalent-bivalent cation channel that is activated by physiological concentrations of extracellular ATP. A quantitative structure-activity relationship (QSAR) analysis was developed to model the cation permeability of the P2X2 channel and its mutants. As chemical properties, the helix-coil equilibrium constants and the distribution coefficients of the system octanol/water at pH 7.4 were applied and modified (sliding windows) according to Eroshkin et al. (Comput. Appl. Biosci., 1995, 11, 49-44). The results were visualized by a dimeric P2X2 channel construct. The results support the hypothesis that residues which put into the cavity and contribute to hydrogen bonding forces are involved to a control of the transport of hydrated cations through the P2X2 channel. The model may be useful to develop P2X2 receptor antagonists.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1573406053175210DOI Listing

Publication Analysis

Top Keywords

p2x2 channel
16
quantitative structure-activity
8
structure-activity relationship
8
cation permeability
8
permeability p2x2
8
p2x2
5
channel
5
relationship analysis
4
analysis cation
4
channel membrane-embedded
4

Similar Publications

Lipopolysaccharide-Neutralizing Peptide Modulates P2X7 Receptor-Mediated Interleukin-1β Release.

ACS Pharmacol Transl Sci

January 2025

Pharmaceutical Institute, Pharmacology and Toxicology, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany.

Lipopolysaccharide (LPS)-neutralizing peptides are emerging as new potential therapeutic modalities to treat sepsis and skin infections. Purinergic ligand-gated ion channels (P2X receptors) play a critical role in various biological processes, including inflammation. Recent drug development efforts have significantly focused on the modulation of P2X receptors.

View Article and Find Full Text PDF

Copper Increases the Cooperative Gating of Rat P2X2a Receptor Channels.

Pharmaceuticals (Basel)

November 2024

Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo 1781421, Chile.

P2X receptor channels are widely expressed in the CNS, where they have multiple functions in health and disease. The rat P2X2a (rP2X2a) receptor channel is modulated by copper, an essential trace element that plays important roles in synaptic modulation and neurodegenerative disorders. Although essential extracellular amino acids that coordinate copper have been identified, the exact mechanism of copper-induced modulation has not been yet elucidated.

View Article and Find Full Text PDF
Article Synopsis
  • P2X receptors are important for sensory signaling and pain, functioning as cation channels activated by ATP, with their activation affected by Mg concentration and the binding of different ATP derivatives.
  • New fluorescently labelled ATP derivatives allow researchers to study how these receptors respond differently to various ligands, highlighting unique behaviors among P2X2, P2X3, and P2X2/3 receptors.
  • The research indicates that while magnesium influences P2X receptor activation, it still maintains strong binding, suggesting complex interactions that are critical for understanding the receptor's role in cellular signaling.
View Article and Find Full Text PDF

The P2X3 receptor (P2X3R), an ATP-gated cation channel predominantly expressed in C- and Aδ-primary afferent neurons, has been proposed as a drug target for neurological inflammatory diseases, e.g., neuropathic pain, and chronic cough.

View Article and Find Full Text PDF

Introduction: P2X receptors are a family of homo- and heterotrimeric cation channels gated by extracellular ATP. The P2X4 and P2X7 subunits show overlapping expression patterns and have been involved in similar physiological processes, such as pain and inflammation as well as various immune cell functions. While formation of P2X2/P2X3 heterotrimers produces a distinct pharmacological phenotype and has been well established, functional identification of a P2X4/P2X7 heteromer has been difficult and evidence for and against a physical association has been found.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!