The preparation and characterization of nitric oxide (NO)-releasing dendrimer conjugates are reported. Generation 3 and 5 polypropylenimine dendrimers (DAB-Am-16 and DAB-Am-64) were modified at the exterior to impart different amine functionalities. The ability to store NO on a dendritic scaffold using N-diazeniumdiolate NO donors was examined via the reaction of primary amine, secondary amine, and amide functionalities with high pressures of NO (5 atm). The secondary amine dendrimer conjugates exhibited a high storage capacity for NO (up to 5.6 micromol NO/mg), greatly increasing the "payload" of released NO over existing macromolecular NO donors. The mechanism of diazeniumdiolate decomposition was proton initiated, generating NO spontaneously under physiological conditions (pH 7.4, 37 degrees C). The NO release durations (>16 h) observed for the secondary amine dendrimers were significantly longer compared to small molecule alkyl secondary amine diazeniumdiolates, thus illustrating a dendritic effect on NO release kinetics. The multivalent exterior of dendrimers allows for the future combination of NO donors and other functionalities on a single molecular scaffold, enabling diverse utility as NO storage/delivery systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja060875z | DOI Listing |
J Colloid Interface Sci
December 2024
College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, 310027, Hangzhou, PR China; Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Institute of Zhejiang University - Quzhou, 324000, Quzhou, PR China. Electronic address:
The selective hydrogenation of nitrile compounds represents a pivotal area of research within both industrial and academic catalysis. In this study, we prepared Ni-Cu bimetallic catalysts through a co-deposition-crystallization sequence, aimed at the efficient production of primary and secondary amines. The enhanced selectivity for primary amines is attributed to the downshift of the d-band center of NiCu, which weakens the adsorption of key imine intermediates.
View Article and Find Full Text PDFWater Res
December 2024
CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China. Electronic address:
Heterotrophic nitrification, similar to autotrophic nitrification, involves key enzymes and reactive nitrogen intermediates during ammonia oxidation, which may influence antibiotic transformation. However, the interference between antibiotic transformation products from ammonia oxidation and secondary metabolites in heterotrophic nitrifiers makes antibiotic transformation pathways more complicated. In this work, we observe that the heterotrophic nitrifier Alcaligenes ammonioxydans HO-1 can effectively convert sulfonamide antibiotics.
View Article and Find Full Text PDFPlant Foods Hum Nutr
December 2024
Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Periférico Norte Km. 33.5, Tablaje Catastral 13615, Col. Chuburná de Hidalgo Inn, Mérida, 97203, Yucatán, México.
The increasing concern over microbial resistance to conventional antimicrobial agents used in food preservation has led to growing interest in plant-derived antimicrobial peptides (AMPs) as alternative solutions. In this study, the antimicrobial mechanisms of chia seed-derived peptides YACLKVK, KLKKNL, KLLKKYL, and KKLLKI were investigated against Staphylococcus aureus (SA) and Escherichia coli (EC). Fluorometric assays and scanning electron microscopy (SEM) demonstrated that the peptides disrupt bacterial membranes, with propidium iodide (PI) uptake reaching 72.
View Article and Find Full Text PDFCurr Oncol
November 2024
Department of Medical Oncology, Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, University of Health Sciences, Ankara 06200, Turkey.
Background/objectives: Dose reductions in CDK4/6 inhibitors, such as ribociclib and palbociclib, are often necessary due to treatment-related toxicities in patients with advanced breast cancer. This study aims to evaluate the impact of the timing of dose reductions on progression-free survival (PFS) and overall survival (OS) in a real-world cohort.
Methods: This single-center, retrospective study included patients treated with ribociclib or palbociclib between 2019 and 2023 at a cancer center in Turkey.
J Biol Chem
December 2024
Department of Chemistry, University of Georgia, Athens, GA 30602. Electronic address:
Pyrrolnitrin, a potent antifungal compound originally discovered in Pseudomonas strains, is biosynthesized through a secondary metabolic pathway involving four key enzymes. Central to this process is PrnB, a heme enzyme that catalyzes the complex transformation of 7-Cl-L-tryptophan. Despite its structural similarity to indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) and its classification within the histidine-ligated heme-dependent aromatic oxygenase (HDAO) superfamily, PrnB has remained relatively unexplored due to challenges in reconstituting its in vitro activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!